Reliable updated residuals in hybrid Bi-CG methods
暂无分享,去创建一个
[1] Yousef Saad,et al. A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..
[2] Roland W. Freund,et al. An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices , 1993, SIAM J. Sci. Comput..
[3] Henk A. van der Vorst,et al. Approximate solutions and eigenvalue bounds from Krylov subspaces , 1995, Numer. Linear Algebra Appl..
[4] U. Yang. Preconditioned Conjugate Gradient-Like Methods for Nonsymmetric Linear Systems , 1992 .
[5] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[6] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[7] A. Greenbaum. Estimating the Attainable Accuracy of Recursively Computed Residual Methods , 1997, SIAM J. Matrix Anal. Appl..
[8] P. Sonneveld. CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .
[9] R. Freund,et al. QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .
[10] Homer F. Walker,et al. Residual Smoothing Techniques for Iterative Methods , 1994, SIAM J. Sci. Comput..
[11] L. Trefethen,et al. Numerical linear algebra , 1997 .
[12] G. Golub,et al. Gmres: a Generalized Minimum Residual Algorithm for Solving , 2022 .
[13] Zhaojun Bai,et al. Error analysis of the Lanczos algorithm for the nonsymmetric eigenvalue problem , 1994 .
[14] Roland W. Freund,et al. A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..
[15] H. V. D. Vorst,et al. Generalized conjugate gradient squared , 1996 .
[16] R. Fletcher. Conjugate gradient methods for indefinite systems , 1976 .
[17] C. Paige. Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem , 1980 .
[18] D. R. Fokkema,et al. BiCGstab(ell) for Linear Equations involving Unsymmetric Matrices with Complex Spectrum , 1993 .
[19] C. Lanczos. Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .
[20] A. Greenbaum. Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences , 1989 .
[21] Gerard L. G. Sleijpen,et al. BiCGstab(l) and other hybrid Bi-CG methods , 1994, Numerical Algorithms.
[22] Gerard L. G. Sleijpen,et al. Maintaining convergence properties of BiCGstab methods in finite precision arithmetic , 1995, Numerical Algorithms.