Snazer: the simulations and networks analyzer

BackgroundNetworks are widely recognized as key determinants of structure and function in systems that span the biological, physical, and social sciences. They are static pictures of the interactions among the components of complex systems. Often, much effort is required to identify networks as part of particular patterns as well as to visualize and interpret them.From a pure dynamical perspective, simulation represents a relevant way-out. Many simulator tools capitalized on the "noisy" behavior of some systems and used formal models to represent cellular activities as temporal trajectories. Statistical methods have been applied to a fairly large number of replicated trajectories in order to infer knowledge.A tool which both graphically manipulates reactive models and deals with sets of simulation time-course data by aggregation, interpretation and statistical analysis is missing and could add value to simulators.ResultsWe designed and implemented Snazer, the simulations and networks analyzer. Its goal is to aid the processes of visualizing and manipulating reactive models, as well as to share and interpret time-course data produced by stochastic simulators or by any other means.ConclusionsSnazer is a solid prototype that integrates biological network and simulation time-course data analysis techniques.

[1]  Andrea Ciliberto,et al.  Antagonism and bistability in protein interaction networks. , 2008, Journal of theoretical biology.

[2]  Stijn van Dongen,et al.  Construction, Visualisation, and Clustering of Transcription Networks from Microarray Expression Data , 2007, PLoS Comput. Biol..

[3]  Ulrik Brandes,et al.  Network Analysis: Methodological Foundations , 2010 .

[4]  Michele Forlin,et al.  Efficient Parallel Statistical Model Checking of Biochemical Networks , 2009, PDMC.

[5]  J I Kim,et al.  Personal networks and the adoption of family planning in rural Korea. , 1984, In'gu pogon nonjip = Journal of population and health studies.

[6]  Michael P H Stumpf,et al.  Complex networks and simple models in biology , 2005, Journal of The Royal Society Interface.

[7]  R. Lewin,et al.  Origins of Plastids , 2012, Springer US.

[8]  Corrado Priami,et al.  The Beta Workbench: a computational tool to study the dynamics of biological systems , 2008, Briefings Bioinform..

[9]  John J Tyson,et al.  A model for restriction point control of the mammalian cell cycle. , 2004, Journal of theoretical biology.

[10]  Jason H. Moore,et al.  Filling the gap between biology and computer science , 2008, BioData Mining.

[11]  Judit Zámborszky,et al.  Computational Analysis of Mammalian Cell Division Gated by a Circadian Clock: Quantized Cell Cycles and Cell Size Control , 2007, Journal of biological rhythms.

[12]  A. Oudenaarden,et al.  Nature, Nurture, or Chance: Stochastic Gene Expression and Its Consequences , 2008, Cell.

[13]  Mario Cannataro,et al.  Using ontologies for preprocessing and mining spectra data on the Grid , 2007, Future Gener. Comput. Syst..

[14]  Peer Bork,et al.  Medusa: a simple tool for interaction graph analysis , 2005, Bioinform..

[15]  F. Westhoff,et al.  Kauffman's The Origins of Order , 1996 .

[16]  Lorenzo Dematté,et al.  On Parallel Stochastic Simulation of Diffusive Systems , 2008, CMSB.

[17]  Judea Pearl,et al.  Bayesian Networks , 1998, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[18]  Edward M. Reingold,et al.  Graph drawing by force‐directed placement , 1991, Softw. Pract. Exp..

[19]  Vittorio Scarano,et al.  Personalizable edge services for Web accessibility , 2006, W4A '06.

[20]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[21]  Constantine Stephanidis,et al.  Universal access in the information society , 1999, HCI.

[22]  Anke Neumann,et al.  Graphical Gaussian Shape Models and Their Application to Image Segmentation , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Falk Schreiber,et al.  VANTED: A system for advanced data analysis and visualization in the context of biological networks , 2006, BMC Bioinformatics.

[24]  kc claffy,et al.  Otter: A general-purpose network visualization tool , 1999 .

[25]  Stuart A. Kauffman,et al.  ORIGINS OF ORDER , 2019, Origins of Order.

[26]  Tatsuya Akutsu,et al.  Genetic Regulatory Networks , 2007, EURASIP J. Bioinform. Syst. Biol..

[27]  Corrado Priami,et al.  The BlenX Language: A Tutorial , 2008, SFM.

[28]  Mario Cannataro,et al.  Mass Spectrometry Data Analysis for Early Detection of Inherited Breast Cancer , 2004, WIRN.

[29]  Corrado Priami,et al.  BlenX4Bio - BlenX for Biologists , 2009, CMSB.

[30]  Amarnath Gupta,et al.  BiologicalNetworks: visualization and analysis tool for systems biology , 2006, Nucleic Acids Res..

[31]  Ron S. Kenett,et al.  Encyclopedia of statistics in quality and reliability , 2007 .

[32]  Peter Kemper,et al.  Möbius Trace Analysis with Traviando , 2008, 2008 Fifth International Conference on Quantitative Evaluation of Systems.

[33]  S. Kauffman Metabolic stability and epigenesis in randomly constructed genetic nets. , 1969, Journal of theoretical biology.

[34]  共立出版株式会社 コンピュータ・サイエンス : ACM computing surveys , 1978 .

[35]  Peter J. Hunter,et al.  An Overview of CellML 1.1, a Biological Model Description Language , 2003, Simul..

[36]  M. V. Valkenburg Network Analysis , 1964 .

[37]  Mudita Singhal,et al.  COPASI - a COmplex PAthway SImulator , 2006, Bioinform..

[38]  Sean Sedwards,et al.  Cyto-Sim: a formal language model and stochastic simulator of membrane-enclosed biochemical processes , 2007, Bioinform..

[39]  David James Sherman,et al.  ProViz: protein interaction visualization and exploration , 2005, Bioinform..

[40]  Reinhard Schneider,et al.  A survey of visualization tools for biological network analysis , 2008, BioData Mining.

[41]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[42]  Vladimir L Katanaev,et al.  Kinetic diversity in G-protein-coupled receptor signalling. , 2007, The Biochemical journal.

[43]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[44]  Mario Cannataro,et al.  On the Preprocessing of Mass Spectrometry Proteomics Data , 2005, WIRN/NAIS.

[45]  Nicolas Le Novère,et al.  MIRIAM Resources: tools to generate and resolve robust cross-references in Systems Biology , 2007, BMC Systems Biology.

[46]  Rosita Guido,et al.  Taming the complexity of biological pathways through parallel computing , 2008, Briefings Bioinform..

[47]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[48]  David Auber,et al.  Tulip - A Huge Graph Visualization Framework , 2004, Graph Drawing Software.

[49]  C. Sander,et al.  The HUPO PSI's Molecular Interaction format—a community standard for the representation of protein interaction data , 2004, Nature Biotechnology.

[50]  Mike Tyers,et al.  BioGRID: a general repository for interaction datasets , 2005, Nucleic Acids Res..

[51]  P. Hartman Ordinary Differential Equations , 1965 .

[52]  Hiroaki Kitano,et al.  The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..

[53]  I. Cameron,et al.  Cell cycle controls , 1974 .

[54]  T. Jacobs,et al.  Cell Cycle Control , 1995 .

[55]  Mario Cannataro,et al.  Preprocessing of mass spectrometry proteomics data on the grid , 2005, 18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05).

[56]  Jo Wixon Pathway Databases , 2001, Comparative and functional genomics.

[57]  BMC Systems Biology , 2007 .

[58]  M. Tyers,et al.  Osprey: a network visualization system , 2003, Genome Biology.

[59]  James L. Peterson,et al.  Petri Nets , 1977, CSUR.