Antenna Designs for CubeSats: A Review

Cube Satellites, aka CubeSats, are a class of nano satellites that have gained popularity recently, especially for those that consider CubeSats as an emerging alternative to conventional satellites for space programs. This is because they are cost-effective, and they can be built using commercial off-the-shelf components. Moreover, CubeSats can communicate with each other in space and ground stations to carry out many functions such as remote sensing (e.g., land imaging, education), space research, wide area measurements and deep space communications. Consequently, communications between CubeSats and ground stations is critical. Any antenna design for a CubeSat needs to meet size and weight restrictions while yielding good antenna radiation performance. To date, a limited number of works have surveyed, compared and categorised the proposed antenna designs for CubeSats based on their operating frequency bands. To this end, this paper contributes to the literature by focusing on different antenna types with different operating frequency bands that are proposed for CubeSat applications. This paper reviews 48 antenna designs, which include 18 patch antennas, 5 slot antennas, 4 dipole and monopole antennas, 3 reflector antennas, 3 reflectarray antennas, 5 helical antennas, 2 metasurface antennas and 3 millimeter and sub-millimeter wave antennas. The current CubeSat antenna design challenges and design techniques to address these challenges are discussed. In addition, we classify these antennas according to their operating frequency bands, e.g., VHF, UHF, L, S, C, X, Ku, K/Ka, W and mm/sub-mm wave bands and provide an extensive qualitative comparison in terms of their size, −10 dB bandwidths, gains, reflection coefficients, and deployability. The suitability of different antenna types for different applications as well as the future trends for CubeSat antennas are also presented.

[1]  Peter A. Warren,et al.  Large, Deployable S-Band Antenna for a 6U Cubesat , 2015 .

[2]  Qi Luo,et al.  A Broadband Printed Monofilar Square Spiral Antenna : A circularly polarized low-profile antenna. , 2017, IEEE Antennas and Propagation Magazine.

[3]  Kwan-Wu Chin,et al.  Dipole antenna array cluster for CubeSats , 2016, 2016 10th International Conference on Signal Processing and Communication Systems (ICSPCS).

[4]  Shih-Ming Yang,et al.  An Inductor Model for Analyzing the Performance of Printed Meander Line Antennas in Smart Structures , 2014 .

[6]  Anja K. Skrivervik,et al.  Aperture-Coupled Low-Profile Wideband Patch Antennas for CubeSat , 2019, IEEE Transactions on Antennas and Propagation.

[7]  C. Turcu,et al.  AN RFID AND AGENT TECHNOLOGIES BASED SYSTEM FOR THE IDENTIFICATION AND MONITORING OF PATIENTS , 2008 .

[8]  Xiaodong Chen,et al.  Study of printed elliptical/circular slot antennas for ultrawideband applications , 2006, IEEE Transactions on Antennas and Propagation.

[9]  J. Costantine,et al.  A deployable Vivaldi-fed conical horn antenna for CubeSats , 2016, 2016 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM).

[10]  Richard Hodges,et al.  Large-Area Deployable Reflectarray Antenna for CubeSats , 2019, AIAA Scitech 2019 Forum.

[11]  Davide Comite,et al.  Solar-Panel Integrated Circularly Polarized Meshed Patch for Cubesats and Other Small Satellites , 2019, IEEE Access.

[12]  Max J. Ammann,et al.  Easy-to-deploy LC-loaded dipole and monopole antennas for cubesat , 2017, 2017 11th European Conference on Antennas and Propagation (EUCAP).

[13]  Jianxun Wang,et al.  A New Patch Antenna Designed for CubeSat: Dual feed, L\/S dual-band stacked, and circularly polarized. , 2016, IEEE Antennas and Propagation Magazine.

[14]  R. Hodges,et al.  CubeSat Deployable Ka-Band Mesh Reflector Antenna Development for Earth Science Missions , 2016, IEEE Transactions on Antennas and Propagation.

[15]  Richard E. Hodges,et al.  Novel deployable reflectarray antennas for CubeSat communications , 2015, 2015 IEEE MTT-S International Microwave Symposium.

[16]  Raad Raad,et al.  S-band Planar Antennas for a CubeSat , 2015 .

[17]  J.D. Lohn,et al.  Evolutionary optimization of a quadrifilar helical antenna , 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[18]  S. Duffy,et al.  A dual-band circularly polarized aperture-coupled stacked microstrip antenna for global positioning satellite , 1997 .

[19]  C. Kilgus Multielement, Fractional Turn Helices , 1968 .

[20]  David M. Pozar,et al.  Wideband reflectarrays using artificial impedance surfaces , 2007 .

[21]  J. M. Tranquilla,et al.  A study of the quadrifilar helix antenna for Global Positioning System (GPS) applications , 1990 .

[22]  James Cutler,et al.  An extendable solar array integrated Yagi-Uda UHF antenna for CubeSat platforms , 2011, 2011 IEEE International Symposium on Antennas and Propagation (APSURSI).

[23]  J. Kraus,et al.  The Helical Antenna , 1949, Proceedings of the IRE.

[24]  Scott E. Palo,et al.  High rate communications systems for CubeSats , 2015, 2015 IEEE MTT-S International Microwave Symposium.

[25]  Qi Luo,et al.  An Efficiency-Improved Tightly Coupled Dipole Reflectarray Antenna Using Variant-Coupling-Capacitance Method , 2020, IEEE Access.

[26]  Sining Liu,et al.  Printed Yagi-Uda antenna array on CubeSat , 2017, 2017 11th International Conference on Signal Processing and Communication Systems (ICSPCS).

[27]  Ping Jack Soh,et al.  Compact circularly polarized S-band antenna for pico-satellites , 2017, 2017 International Symposium on Antennas and Propagation (ISAP).

[28]  Rainer Sandau,et al.  Status and trends of small satellite missions for Earth observation , 2010 .

[29]  Nacer Chahat,et al.  A Deployable High-Gain Antenna Bound for Mars: Developing a new folded-panel reflectarray for the first CubeSat mission to Mars. , 2017, IEEE Antennas and Propagation Magazine.

[30]  Maha A. Maged,et al.  C-Band Transparent Antenna Design for Intersatellites Communication , 2018 .

[31]  Hadia El-Hennawy,et al.  Design and Realization of Circular Polarized SIW Slot Array Antenna for Cubesat Intersatellite Links , 2018 .

[32]  Cheng-Chien Liu,et al.  Processing of FORMOSAT-2 Daily Revisit Imagery for Site Surveillance , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[33]  Kwan-Wu Chin,et al.  S-band shorted patch antenna for inter pico satellite communications , 2014, 2014 8th International Conference on Telecommunication Systems Services and Applications (TSSA).

[34]  Fuqin Xiong,et al.  for Satellite Communication Systems , 1994 .

[35]  Jennifer Urner,et al.  Antenna Theory And Design , 2016 .

[36]  D. Pozar Microstrip antenna aperture-coupled to a microstripline , 1985 .

[37]  Muhammad Ramlee Kamarudin,et al.  Polarization Diversity and Adaptive Beamsteering for 5G Reflectarrays: A Review , 2018, IEEE Access.

[38]  Yahya Rahmat-Samii,et al.  Advanced Antennas for Small Satellites , 2018, Proceedings of the IEEE.

[39]  Kaushik Mandal,et al.  High Gain Wide-Band U-Shaped Patch Antennas With Modified Ground Planes , 2013, IEEE Transactions on Antennas and Propagation.

[40]  O. Quevedo‐Teruel,et al.  A Transparent Dual-Band Cubesat Antenna Based on Stacked Patches Team GRID : , 2016 .

[41]  A. K. A. N. Volkan,et al.  Electrically small printed antenna for applications on cubesat and nano‐satellite platforms , 2015 .

[42]  Ke Wu,et al.  Guided-wave and leakage characteristics of substrate integrated waveguide , 2005, IEEE Transactions on Microwave Theory and Techniques.

[43]  Khac Kiem Nguyen,et al.  Planar circularly polarized X‐band array antenna with low sidelobe and high aperture efficiency for small satellites , 2019, International Journal of RF and Microwave Computer-Aided Engineering.

[44]  Atef Z. Elsherbeni,et al.  Beam-Scanning Reflectarray Antennas: A technical overview and state of the art. , 2015, IEEE Antennas and Propagation Magazine.

[45]  Nacer Chahat,et al.  One-Meter Deployable Mesh Reflector for Deep-Space Network Telecommunication at ${X}$ -Band and $Ka$ -Band , 2020, IEEE Transactions on Antennas and Propagation.

[46]  Abdel-Razik Sebak,et al.  Ka-Band Linear to Circular Polarization Converter Based on Multilayer Slab With Broadband Performance , 2017, IEEE Access.

[47]  Alexis Ygnacio-Espinoza,et al.  Quasi-transparent meshed and circularly polarized patch antenna with metamaterials integrated to a solar cell for S-band CubeSat applications , 2018, 2018 International Conference on Electromagnetics in Advanced Applications (ICEAA).

[48]  R. Baktur,et al.  Bandwidth Enhancement of Meshed Patch Antennas Through Proximity Coupling , 2017, IEEE Antennas and Wireless Propagation Letters.

[49]  Ronan Sauleau,et al.  Additive Manufactured Metal-Only Modulated Metasurface Antennas , 2018, IEEE Transactions on Antennas and Propagation.

[50]  Vignesh Manohar,et al.  For Satellites, Think Small, Dream Big: A review of recent antenna developments for CubeSats. , 2017, IEEE Antennas and Propagation Magazine.

[51]  Christopher W. Trueman,et al.  Design and Implementation of a Diplexer and a Dual-Band VHF/UHF Antenna for Nanosatellites , 2013, IEEE Antennas and Wireless Propagation Letters.

[52]  J. Maria,et al.  X-band antenna for CubeSat satellite , 2017 .

[53]  Shyh-Jong Chung,et al.  A Miniature Quadrifilar Helix Antenna for Global Positioning Satellite Reception , 2009, IEEE Transactions on Antennas and Propagation.

[54]  R. Lehmensiek Design of a wideband circularly polarized 2 × 2 array with shorted annular patches at X-band on a CubeSat , 2017, 2017 International Symposium on Antennas and Propagation (ISAP).

[55]  Cruz Ángel Figueroa Torres,et al.  A 2.45-GHz Circular Polarization Closed-Loop Travelling-Wave Antenna for Cubesats , 2019, 2019 International Conference on Electronics, Communications and Computers (CONIELECOMP).

[56]  David R. Jackson,et al.  Transparent microstrip antennas for CubeSat applications , 2013, IEEE International Conference on Wireless for Space and Extreme Environments.

[57]  Orlando Francois Gonzales Palacios,et al.  S-band koch snowflake fractal antenna for cubesats , 2016, 2016 IEEE ANDESCON.

[58]  A. Adams,et al.  The quadrifilar helix antenna , 1974 .

[59]  Reyhan Baktur,et al.  Circularly polarized UHF up- and downlink antennas integrated with CubeSat solar panels , 2015, 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.

[60]  T. Denidni,et al.  Optically Transparent Subarray Antenna Based on Solar Panel for CubeSat Application , 2020, IEEE Transactions on Antennas and Propagation.

[61]  S. N. Azemi,et al.  A flexible deployable CubeSat antenna , 2016, 2016 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE).

[62]  Ping Jack Soh,et al.  A Review of Antennas for Picosatellite Applications , 2017 .

[63]  Kwan-Wu Chin,et al.  A high gain S-band slot antenna with MSS for CubeSat , 2018, Ann. des Télécommunications.

[64]  C. Kilgus,et al.  Shaped-conical radiation pattern performance of the backfire quadrifilar helix , 1975 .

[65]  Kai Fong Lee,et al.  Microstrip Patch Antennas—Basic Characteristics and Some Recent Advances , 2012, Proceedings of the IEEE.

[66]  Hirotaka Sawada,et al.  Tokyo Tech CubeSat: CUTE-I - Design & Development of Flight Model and Future Plan - , 2003 .

[67]  Lee Kai Fong,et al.  On the Use of Shorting Pins in the Design of Microstrip Patch Antennas , 2004 .

[68]  Ghanshyam Mishra,et al.  A Circular Polarized Feed Horn With Inbuilt Polarizer for Offset Reflector Antenna for $W$ -Band CubeSat Applications , 2019, IEEE Transactions on Antennas and Propagation.

[69]  Timothy D. Drysdale,et al.  A CubeSat for Calibrating Ground-Based and Sub-Orbital Millimeter-Wave Polarimeters (CalSat) , 2015, 1505.07033.

[70]  Nasir Saeed,et al.  CubeSat Communications: Recent Advances and Future Challenges , 2019, ArXiv.

[71]  G. Chattopadhyay,et al.  Multibeam Si/GaAs Holographic Metasurface Antenna at W-Band , 2020, IEEE Transactions on Antennas and Propagation.

[72]  Sergio Pellegrino,et al.  UHF Deployable Helical Antennas for CubeSats , 2016, IEEE Transactions on Antennas and Propagation.

[73]  Reyhan Baktur,et al.  Conformal Integrated Solar Panel Antennas: Two effective integration methods of antennas with solar cells. , 2017, IEEE Antennas and Propagation Magazine.

[74]  Chi-Chih Chen,et al.  A 6–40 GHz CubeSAT antenna system , 2017, 2017 11th European Conference on Antennas and Propagation (EUCAP).

[75]  J. Shaker,et al.  Observations on the performance of reflectarrays with reduced inter-element spacings , 2011, 2011 IEEE International Symposium on Antennas and Propagation (APSURSI).

[76]  Sara Seager,et al.  Inflatable antenna for cubesats: Motivation for development and antenna design , 2013 .

[77]  Okan Yurduseven,et al.  Advanced CubeSat Antennas for Deep Space and Earth Science Missions: A review , 2019, IEEE Antennas and Propagation Magazine.

[78]  J. Costantine,et al.  A modified helical shaped deployable antenna for cubesats , 2012, 2012 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC).

[79]  Kwan-Wu Chin,et al.  A Survey and Study of Planar Antennas for Pico-Satellites , 2015, IEEE Access.

[80]  J. Costantine,et al.  A deployable quadrifilar helix antenna for CubeSat , 2012, Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation.

[81]  Shannon T. Brown,et al.  Overview of Temporal Experiment for Storms and Tropical Systems (TEMPEST) CubeSat constellation mission , 2015, 2015 IEEE MTT-S International Microwave Symposium.

[82]  Kwan-Wu Chin,et al.  A low profile high gain CPW-fed slot antenna with a cavity backed reflector for CubeSats , 2017, 2017 11th International Conference on Signal Processing and Communication Systems (ICSPCS).

[83]  Stefano Pisa,et al.  High-Gain S-band Patch Antenna System for Earth-Observation CubeSat Satellites , 2015, IEEE Antennas and Wireless Propagation Letters.

[84]  C. Kilgus Resonant quadrafilar helix , 1969 .

[85]  Ramon Martinez Rodriguez-Osorio,et al.  A hands-on education project: antenna design for inter-CubeSat communications , 2012 .

[86]  Qi Luo,et al.  Introduction to Circularly Polarized Antennas , 2014 .