Forbidden Berge Hypergraphs

A \emph{simple} matrix is a (0,1)-matrix with no repeated columns. For a (0,1)-matrix $F$, we say that a (0,1)-matrix $A$ has $F$ as a \emph{Berge hypergraph} if there is a submatrix $B$ of $A$ and some row and column permutation of $F$, say $G$, with $G\le B$. Letting $||A||$ denote the number of columns in $A$, we define the extremal function $Bh(m,{ F})=\max\{||A||\,:\, A \hbox{ is }m\hbox{-rowed simple matrix with no Berge hypergraph }F\}$. We determine the asymptotics of $Bh(m,F)$ for all $3$- and $4$-rowed $F$ and most $5$-rowed $F$. For certain $F$, this becomes the problem of determining the maximum number of copies of $K_r$ in a $m$-vertex graph that has no $K_{s,t}$ subgraph, a problem studied by Alon and Shinkleman.

[1]  Zoltán Füredi,et al.  Davenport-Schinzel theory of matrices , 1992, Discret. Math..

[2]  Gábor Tardos,et al.  Excluded permutation matrices and the Stanley-Wilf conjecture , 2004, J. Comb. Theory, Ser. A.

[3]  Béla Bollobás,et al.  Unavoidable Traces Of Set Systems , 2005, Comb..

[4]  Richard P. Anstee,et al.  Two refinements of the bound of Sauer, Perles and Shelah, and of Vapnik and Chervonenkis , 2010, Discret. Math..

[5]  P. Erdös On the structure of linear graphs , 1946 .

[6]  V. Sós,et al.  On a problem of K. Zarankiewicz , 1954 .

[7]  Noga Alon,et al.  Many T copies in H-free graphs , 2014, Electron. Notes Discret. Math..

[8]  Richard P. Anstee,et al.  A Survey of Forbidden Configuration Results , 2013 .

[9]  W. G. Brown On Graphs that do not Contain a Thomsen Graph , 1966, Canadian Mathematical Bulletin.

[10]  P. Erdös On extremal problems of graphs and generalized graphs , 1964 .

[11]  Richard P. Anstee,et al.  Forbidden families of configurations , 2013, Australas. J Comb..

[12]  P. Erdos,et al.  A LIMIT THEOREM IN GRAPH THEORY , 1966 .

[13]  Alexandr V. Kostochka,et al.  Turán Problems and Shadows III: Expansions of Graphs , 2014, SIAM J. Discret. Math..

[14]  Richard P. Anstee,et al.  Small Forbidden Configurations , 1997, Graphs Comb..

[15]  Zoltán Füredi,et al.  An Upper Bound on Zarankiewicz' Problem , 1996, Combinatorics, Probability and Computing.

[16]  Richard P. Anstee,et al.  Forbidden Configurations and Product Constructions , 2014, Graphs Comb..