Security Bounds for Efficient Decoy-State Quantum Key Distribution

Information-theoretical security of quantum key distribution (QKD) has been convincingly proven in recent years and remarkable experiments have shown the potential of QKD for real-world applications. Due to its unique capability of combining high key rate and security in a realistic finite-size scenario, the efficient version of the BB84 QKD protocol endowed with decoy states has been subject of intensive research. Its recent experimental implementation finally demonstrated a secure key rate beyond 1 Mb/s over a 50 km of optical fiber. However, the achieved rate holds under the restrictive assumption that the eavesdropper performs collective attacks. Here, we review the protocol and generalize its security. We exploit a map by Ahrens to rigorously upper bound the hypergeometric distribution resulting from a general eavesdropping. Despite the extended applicability of the new protocol, its key rate is only marginally smaller than its predecessor in all cases of practical interest.

[1]  Won-Young Hwang Quantum key distribution with high loss: toward global secure communication. , 2003, Physical review letters.

[2]  James F. Dynes,et al.  Practical treatment of quantum bugs , 2012, Optics/Photonics in Security and Defence.

[3]  Xiongfeng Ma,et al.  Practical issues in quantum-key-distribution postprocessing , 2009, 0910.0312.

[4]  R. Renner,et al.  An information-theoretic security proof for QKD protocols , 2005, quant-ph/0502064.

[5]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[6]  R. Renner,et al.  Information-theoretic security proof for quantum-key-distribution protocols , 2005, quant-ph/0502064.

[7]  R. Serfling Probability Inequalities for the Sum in Sampling without Replacement , 1974 .

[8]  R. Penty,et al.  Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks , 2014, 1402.1508.

[9]  Xiongfeng Ma,et al.  Decoy state quantum key distribution. , 2004, Physical review letters.

[10]  John Preskill,et al.  Security of quantum key distribution using weak coherent states with nonrandom phases , 2007, Quantum Inf. Comput..

[11]  M. Hayashi,et al.  Security analysis of the decoy method with the Bennett–Brassard 1984 protocol for finite key lengths , 2013, 1302.4139.

[12]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[13]  B Kraus,et al.  Lower and upper bounds on the secret-key rate for quantum key distribution protocols using one-way classical communication. , 2004, Physical review letters.

[14]  R. Renner,et al.  Uncertainty relation for smooth entropies. , 2010, Physical review letters.

[15]  G. Weihs,et al.  Entangled quantum key distribution with a biased basis choice , 2009, 0901.0960.

[16]  A. W. Sharpe,et al.  Coexistence of High-Bit-Rate Quantum Key Distribution and Data on Optical Fiber , 2012, 1212.0033.

[17]  Patrick Rice,et al.  Numerical analysis of decoy state quantum key distribution protocols , 2008, 0901.0013.

[18]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[19]  Renato Renner,et al.  Security Bounds for Quantum Cryptography with Finite Resources , 2008, TQC.

[20]  J. Ahrens A Comparison of Hypergeometric Distributions with Corresponding Binomial Distributions , 1987 .

[21]  H. Inamori,et al.  Unconditional security of practical quantum key distribution , 2007 .

[22]  Xiang‐Bin Wang,et al.  Beating the PNS attack in practical quantum cryptography , 2004 .

[23]  A R Dixon,et al.  Efficient decoy-state quantum key distribution with quantified security. , 2013, Optics express.

[24]  Paolo Villoresi,et al.  Experimental quantum key distribution with finite-key security analysis for noisy channels , 2013, Nature Communications.

[25]  K. Tamaki,et al.  Security proof for quantum-key-distribution systems with threshold detectors , 2008, 0803.4226.

[26]  Normand J. Beaudry,et al.  Squashing models for optical measurements in quantum communication. , 2008, Physical review letters.

[27]  Joseph M. Renes,et al.  One-Shot Classical Data Compression With Quantum Side Information and the Distillation of Common Randomness or Secret Keys , 2010, IEEE Transactions on Information Theory.

[28]  Renato Renner,et al.  Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing. , 2007, Physical review letters.

[29]  John Preskill,et al.  Security of quantum key distribution with imperfect devices , 2002, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[30]  A. Agresti,et al.  Approximate is Better than “Exact” for Interval Estimation of Binomial Proportions , 1998 .

[31]  H. Chau,et al.  Efficient Quantum Key Distribution , 1998, quant-ph/9803007.

[32]  James F. Dynes,et al.  A quantum access network , 2013, Nature.

[33]  A R Dixon,et al.  Field test of quantum key distribution in the Tokyo QKD Network. , 2011, Optics express.

[34]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[35]  Masahito Hayashi,et al.  Experimental Decoy State Quantum Key Distribution with Unconditional Security Incorporating Finite Statistics , 2007, 0705.3081.

[36]  M. Hayashi Upper bounds of eavesdropper’s performances in finite-length code with the decoy method , 2007, quant-ph/0702250.

[37]  Richard J. Hughes,et al.  Practical long-distance quantum key distribution system using decoy levels , 2008, 0806.3085.

[38]  H. Lo,et al.  Practical Decoy State for Quantum Key Distribution , 2005, quant-ph/0503005.

[39]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[40]  Feihu Xu,et al.  Concise security bounds for practical decoy-state quantum key distribution , 2013, 1311.7129.

[41]  Masahito Hayashi,et al.  Practical evaluation of security for quantum key distribution , 2006 .

[42]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[43]  Dominic Mayers,et al.  On the Security of the Quantum Oblivious Transfer and Key Distribution Protocols , 1995, CRYPTO.

[44]  E. S. Pearson,et al.  THE USE OF CONFIDENCE OR FIDUCIAL LIMITS ILLUSTRATED IN THE CASE OF THE BINOMIAL , 1934 .

[45]  Valerio Scarani,et al.  Finite-key analysis for practical implementations of quantum key distribution , 2008, 0811.2628.

[46]  J. M. Ettinger,et al.  Enhancing practical security of quantum key distribution with a few decoy states , 2005, quant-ph/0503002.

[47]  H. Weinfurter,et al.  The SECOQC quantum key distribution network in Vienna , 2009, 2009 35th European Conference on Optical Communication.

[48]  Hermann Kampermann,et al.  Secret key rates for coherent attacks , 2012, 1207.0085.

[49]  Eleni Diamanti,et al.  Experimental demonstration of long-distance continuous-variable quantum key distribution , 2012, Nature Photonics.

[50]  A. Tomita,et al.  Efficient and low-noise single-photon avalanche photodiode for 1.244-GHz clocked quantum key distribution. , 2011, Optics express.

[51]  J. F. Dynes,et al.  Room temperature single-photon detectors for high bit rate quantum key distribution , 2014 .

[52]  Shun Watanabe,et al.  NOISE TOLERANCE OF THE BB84 PROTOCOL WITH RANDOM PRIVACY AMPLIFICATION , 2006 .

[53]  Marco Tomamichel,et al.  Tight finite-key analysis for quantum cryptography , 2011, Nature Communications.

[54]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[55]  Larry Carter,et al.  Universal Classes of Hash Functions , 1979, J. Comput. Syst. Sci..