Exploiting global priors for RGB-D saliency detection

Inspired by the effectiveness of global priors for 2D saliency analysis, this paper aims to explore those particular to RGB-D data. To this end, we propose two priors, which are the normalized depth prior and the global-context surface orientation prior, and formulate them in the forms simple for computation. A two-stage RGB-D salient object detection framework is presented. It first integrates the region contrast, together with the background, depth, and orientation priors to achieve a saliency map. Then, a saliency restoration scheme is proposed, which integrates the PageRank algorithm for sampling high confident regions and recovers saliency for those ambiguous. The saliency map is thus reconstructed and refined globally. We conduct comparative experiments on two publicly available RGB-D datasets. Experimental results show that our approach consistently outperforms other state-of-the-art algorithms on both datasets.

[1]  Martin D. Levine,et al.  Visual Saliency Based on Scale-Space Analysis in the Frequency Domain , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Philip H. S. Torr,et al.  Salient Object Detection and Segmentation , 2013 .

[3]  Haibin Ling,et al.  Saliency Detection on Light Field , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  David W. Jacobs,et al.  Mesh saliency , 2005, SIGGRAPH 2005.

[5]  Ronald A. Rensink,et al.  Influence of scene-based properties on visual search. , 1990, Science.

[6]  Huchuan Lu,et al.  Saliency Detection via Graph-Based Manifold Ranking , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[7]  Li Xu,et al.  Hierarchical Saliency Detection , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Liang-Tien Chia,et al.  Improved saliency detection based on superpixel clustering and saliency propagation , 2010, ACM Multimedia.

[9]  M. Vincze,et al.  Calculation of Attention Points Using 3D Cues , 2012 .

[10]  Rynson W. H. Lau,et al.  Saliency Detection with Flash and No-flash Image Pairs , 2014, ECCV.

[11]  Alexei A. Efros,et al.  Putting Objects in Perspective , 2006, CVPR.

[12]  Pascal Fua,et al.  SLIC Superpixels Compared to State-of-the-Art Superpixel Methods , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Rongrong Ji,et al.  RGBD Salient Object Detection: A Benchmark and Algorithms , 2014, ECCV.

[14]  Ali Borji,et al.  State-of-the-Art in Visual Attention Modeling , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[16]  Shiguang Shan,et al.  Adaptive Partial Differential Equation Learning for Visual Saliency Detection , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  J. Theeuwes,et al.  Attentional control within 3-D space. , 1998, Journal of experimental psychology. Human perception and performance.

[18]  Andrew Blake,et al.  "GrabCut" , 2004, ACM Trans. Graph..

[19]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[21]  Jingdong Wang,et al.  Salient Object Detection: A Discriminative Regional Feature Integration Approach , 2013, International Journal of Computer Vision.

[22]  Harish Katti,et al.  Depth Matters: Influence of Depth Cues on Visual Saliency , 2012, ECCV.

[23]  Sabine Süsstrunk,et al.  Frequency-tuned salient region detection , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Ran Ju,et al.  Depth saliency based on anisotropic center-surround difference , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[25]  Junle Wang,et al.  Study of depth bias of observers in free viewing of still stereoscopic synthetic stimuli , 2012 .

[26]  James M. Rehg,et al.  An In Depth View of Saliency , 2013, BMVC.

[27]  Benjamin W Tatler,et al.  The central fixation bias in scene viewing: selecting an optimal viewing position independently of motor biases and image feature distributions. , 2007, Journal of vision.

[28]  Jian Sun,et al.  Saliency Optimization from Robust Background Detection , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  Nuno Vasconcelos,et al.  The discriminant center-surround hypothesis for bottom-up saliency , 2007, NIPS.

[30]  Ying Wu,et al.  A unified approach to salient object detection via low rank matrix recovery , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[31]  S. Süsstrunk,et al.  Frequency-tuned salient region detection , 2009, CVPR 2009.

[32]  K. Madhava Krishna,et al.  Depth really Matters: Improving Visual Salient Region Detection with Depth , 2013, BMVC.

[33]  Jian Sun,et al.  Geodesic Saliency Using Background Priors , 2012, ECCV.

[34]  Xueqing Li,et al.  Leveraging stereopsis for saliency analysis , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.