Alpha Galois Lattices: An Overview

What we propose here is to reduce the size of Galois lattices still conserving their formal structure and exhaustivity. For that purpose we use a preliminary partition of the instance set, representing the association of a “type” to each instance. By redefining the notion of extent of a term in order to cope, to a certain degree (denoted as α), with this partition, we define a particular family of Galois lattices denoted as Alpha Galois lattices. We also discuss the related implication rules defined as inclusion of such α-extents and show that Iceberg concept lattices are Alpha Galois lattices where the partition is reduced to one single class.

[1]  Jean Sallantin,et al.  Structural Machine Learning with Galois Lattice and Graphs , 1998, ICML.

[2]  Bernhard Ganter,et al.  Formal Concept Analysis: Logical Foundations , 1999 .

[3]  Kitsana Waiyamai,et al.  Knowledge Discovery from Very Large Databases Using Frequent Concept Lattices , 2000, ECML.

[4]  Henry Soldano,et al.  Les treillis de Galois Alpha , 2005, Rev. d'Intelligence Artif..

[5]  Sergei O. Kuznetsov,et al.  Comparing performance of algorithms for generating concept lattices , 2002, J. Exp. Theor. Artif. Intell..

[6]  Mohammed J. Zaki Generating non-redundant association rules , 2000, KDD '00.

[7]  Vincent Duquenne,et al.  Familles minimales d'implications informatives résultant d'un tableau de données binaires , 1986 .

[8]  Nathalie Pernelle,et al.  ZooM: a nested Galois lattices-based system for conceptual clustering , 2002, J. Exp. Theor. Artif. Intell..

[9]  Michael Luxenburger,et al.  Implications partielles dans un contexte , 1991 .

[10]  Bernhard Ganter,et al.  Conceptual Structures: Logical, Linguistic, and Computational Issues , 2000, Lecture Notes in Computer Science.

[11]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[12]  Rokia Missaoui,et al.  A partition-based approach towards constructing Galois (concept) lattices , 2002, Discret. Math..

[13]  Bernhard Ganter,et al.  Pattern Structures and Their Projections , 2001, ICCS.

[14]  Nicolas Pasquier,et al.  Efficient Mining of Association Rules Using Closed Itemset Lattices , 1999, Inf. Syst..

[15]  Zdzislaw Pawlak,et al.  Rough Sets, Rough Relations and Rough Functions , 1996, Fundam. Informaticae.

[16]  Jean-Gabriel Ganascia TDIS : an Algebraic Formalization , 1993, IJCAI.

[17]  Yves Bastide,et al.  Intelligent Structuring and Reducing of Association Rules with Formal Concept Analysis , 2001, KI/ÖGAI.

[18]  Gerd Stumme,et al.  Computing iceberg concept lattices with T , 2002, Data Knowl. Eng..

[19]  Enric Plaza,et al.  Machine Learning: ECML 2000 , 2003, Lecture Notes in Computer Science.

[20]  Gerd Stumme,et al.  Conceptual Structures: Broadening the Base , 2001, Lecture Notes in Computer Science.

[21]  Franz Baader,et al.  KI 2001: Advances in Artificial Intelligence , 2001, Lecture Notes in Computer Science.

[22]  Gerd Stumme,et al.  Conceptual Knowledge Discovery and Data Analysis , 2000, ICCS.