Low-Noise Microwave Resonator-Oscillators: Current Status and Future Developments

This contribution is devoted to principles of operation and design of low noise electromagnetic oscillators. We begin this chapter by introducing the concept of oscillator frequency stability and discussing both time and frequency domain ap- proaches to its characterisation. We review most common experimental techniques used for improving the oscillator frequency stability. A particular attention is paid to applications of microwave circuit interferometry to precision measurements of os- cillator frequency fluctuations. Finally, we analyse the future trends in the design of low noise microwave oscillators. This includes (i) interferometric suppression of os- cillator power fluctuations and (ii) reduction of the oscillator frequency-temperature dependence by making use of an anisotropy of sapphire dielectric resonators.

[1]  R. C. Taber,et al.  High performance distributed Bragg reflector microwave resonator , 1997 .

[2]  Michael E. Tobar,et al.  Applications of interferometric signal processing to phase-noise reduction in microwave oscillators , 1998 .

[3]  M. Tobar,et al.  A study of noise phenomena in microwave components using an advanced noise measurement system , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[4]  David Blair,et al.  Phase noise analysis of the sapphire loaded superconducting niobium cavity oscillator , 1994 .

[5]  R. W. Laton,et al.  Analysis and Design of a Single-Resonator GaAs FET Oscillator with Noise Degeneration , 1984 .

[6]  David Blair,et al.  Power stabilized cryogenic sapphire oscillator , 1995 .

[7]  F. L. Walls,et al.  High spectral purity X-band source , 1990, 44th Annual Symposium on Frequency Control.

[8]  Michael E. Tobar,et al.  Dielectric frequency - temperature- compensated microwave whispering-gallery-mode resonators , 1997 .

[9]  P. Blondy,et al.  High-Q whispering gallery traveling wave resonators for oscillator frequency stabilization , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[10]  D. Blair,et al.  An ultralow noise microwave oscillator based on a high-Q liquid nitrogen cooled sapphire resonator , 1995, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[11]  Michael E. Tobar,et al.  Low noise 9-GHz sapphire resonator-oscillator with thermoelectric temperature stabilization at 300 Kelvin , 1995 .

[12]  J. Krupka,et al.  Frequency-temperature compensation in Ti(3+) and Ti(4+ ) doped sapphire whispering gallery mode resonators. , 1999, IEEE transactions on ultrasonics, ferroelectrics, and frequency control.

[13]  J. Vig,et al.  Fundamental limits on the frequency stabilities of crystal oscillators , 1995, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[14]  M. Tobar,et al.  Experimental study of the noise phenomena in microwave components , 1996, Proceedings of 1996 IEEE International Frequency Control Symposium.

[15]  G. J. Dick,et al.  Closed loop tests of the NASA sapphire phase stabilizer , 1993, 1993 IEEE International Frequency Control Symposium.

[16]  G. J. Dick,et al.  Microwave frequency discriminator with a cooled sapphire resonator for ultra-low phase noise , 1992, Proceedings of the 1992 IEEE Frequency Control Symposium.

[17]  D. Leeson A simple model of feedback oscillator noise spectrum , 1966 .

[18]  J. Krupka,et al.  High-Q sapphire-rutile frequency-temperature compensated microwave dielectric resonators , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[19]  L. Maleki,et al.  Optoelectronic microwave oscillator , 1996 .

[20]  J. G. Ondria,et al.  A Microwave System for Measurements of AM and FM Noise Spectra , 1968 .

[21]  M. Tobar,et al.  Microwave interferometry: application to precision measurements and noise reduction techniques , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[22]  Michael E. Tobar,et al.  Advanced phase noise suppression technique for next generation of ultra low-noise microwave oscillators , 1995, Proceedings of the 1995 IEEE International Frequency Control Symposium (49th Annual Symposium).

[23]  D. Tsarapkin Sapphire disk dielectric resonator temperature coefficient of frequency dependence on temperature, disk configuration and resonant mode , 1994, Proceedings of IEEE 48th Annual Symposium on Frequency Control.

[24]  An extremely low noise, phase lockable, sapphire loaded cavity based microwave oscillator , 1999, 1999 IEEE MTT-S International Microwave Symposium Digest (Cat. No.99CH36282).

[25]  D. P. Tsarapkin An uncooled microwave oscillator with 1-million effective Q-factor , 1993, 1993 IEEE International Frequency Control Symposium.

[26]  M. Tobar,et al.  High-Q TE stabilized sapphire microwave resonators for low noise applications , 1993, 1993 IEEE International Frequency Control Symposium.

[27]  D. Blair,et al.  Power stabilised exceptionally high stability cryogenic sapphire resonator oscillator , 1994, Proceedings of Conference on Precision Electromagnetic Measurements Digest.

[28]  Michael E. Tobar,et al.  Ultra-low-noise microwave oscillator with advanced phase noise suppression system , 1996 .

[29]  J.T. Haynes,et al.  Cooled, ultra-high Q, sapphire dielectric resonators for low noise, microwave signal generation , 1991, Proceedings of the 45th Annual Symposium on Frequency Control 1991.

[30]  Lute Maleki,et al.  Dual-loop opto-electronic oscillator , 1998, Proceedings of the 1998 IEEE International Frequency Control Symposium (Cat. No.98CH36165).

[31]  David Blair,et al.  An ultralow noise microwave oscillator based on a high-Q liquid nitrogen cooled sapphire resonator , 1996 .

[32]  L. Maleki,et al.  Dual microwave and optical oscillator. , 1997, Optics letters.

[33]  M. M. Driscoll,et al.  Spectral performance of sapphire dielectric resonator-controlled oscillators operating in the 80 K to 275 K temperature range , 1995, Proceedings of the 1995 IEEE International Frequency Control Symposium (49th Annual Symposium).

[34]  P. Blondy,et al.  High-Q whispering gallery travelling wave resonators for oscillator frequency stabilisation , 1999, Proceedings of the 1999 Joint Meeting of the European Frequency and Time Forum and the IEEE International Frequency Control Symposium (Cat. No.99CH36313).

[35]  J. Talvacchio,et al.  Cooled, ultrahigh Q, sapphire dielectric resonators for low-noise, microwave signal generation , 1992, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[36]  R. C. Taber,et al.  Microwave oscillators incorporating cryogenic sapphire dielectric resonators , 1995 .

[37]  L. Maleki,et al.  Converting light into spectrally pure microwave oscillation. , 1996, Optics letters.

[38]  M. Tobar,et al.  High-Q thermoelectric-stabilized sapphire microwave resonators for low-noise applications , 1994, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[39]  Enrico Gobbetti,et al.  Encyclopedia of Electrical and Electronics Engineering , 1999 .

[40]  J. Everard,et al.  Transposed gain microwave oscillators with low residual flicker noise , 1995, Proceedings of the 1995 IEEE International Frequency Control Symposium (49th Annual Symposium).

[41]  J. Vanier,et al.  The quantum physics of atomic frequency standards , 1989 .

[42]  Leo W. Hollberg,et al.  A 1 GHz optical-delay-line oscillator driven by a diode laser , 1996, Proceedings of 1996 IEEE International Frequency Control Symposium.