Turbulent and inertial roll waves in inclined film flow

Conditions for the onset of high Reynolds number roll waves on inclined interfaces are sought. The model equations of Dressler [Commun. Pure Appl. Math. 2, 149 (1949)] and Needham and Merkin [Proc. R. Soc. London Ser. A 394, 259 (1984)] are analyzed using dynamic singularity theory (normal form techniques) and numerical methods. A new family of roll‐wave solutions is discovered. They provide bounds and averages of the velocities of all roll waves at a given Froude number. These are favorably compared to the data of Brock [Proc. Am. Soc. Civ. Eng. 12, 2565 (1970)] and Brauner and Maron [Int. J. Heat Mass Transfer 25, 99 (1982)]. The average wave velocity is demonstrated to be approximately 1.5 times the average fluid velocity.

[1]  L. Chambers Linear and Nonlinear Waves , 2000, The Mathematical Gazette.

[2]  Hsueh-Chia Chang,et al.  Traveling waves on fluid interfaces: Normal form analysis of the Kuramoto–Sivashinsky equation , 1986 .

[3]  J. Merkin,et al.  On infinite period bifurcations with an application to roll waves , 1986 .

[4]  J. Merkin,et al.  An infinite period bifurcation arising in roll waves down an open inclined channel , 1986, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[5]  S. V. Alekseenko,et al.  Wave formation on a vertical falling liquid film , 1985 .

[6]  John H. Merkin,et al.  On roll waves down an open inclined channel , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[7]  J. Villadsen,et al.  Simulation of the vertical flow of a thin, wavy film using a finite-element method , 1984 .

[8]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[9]  Martin Golubitsky,et al.  Classification and Unfoldings of Degenerate Hopf Bifurcations , 1981 .

[10]  P. Holmes,et al.  New Approaches to Nonlinear Problems in Dynamics , 1981 .

[11]  G. Sivashinsky,et al.  On Irregular Wavy Flow of a Liquid Film Down a Vertical Plane , 1980 .

[12]  S. Kato,et al.  Longitudinal flow characteristics of vertically falling liquid films without concurrent gas flow , 1980 .

[13]  C. Nakaya Long waves on a thin fluid layer flowing down an inclined plane , 1975 .

[14]  R. I. Bogdanov Versal deformations of a singular point of a vector field on the plane in the case of zero eigenvalues , 1975 .

[15]  S. P. Lin Finite amplitude side-band stability of a viscous film , 1974, Journal of Fluid Mechanics.

[16]  A. D. Young,et al.  An Introduction to Fluid Mechanics , 1968 .

[17]  D. J. Benney Long Waves on Liquid Films , 1966 .

[18]  R. Dressler,et al.  Mathematical solution of the problem of roll-waves in inclined opel channels , 1949 .

[19]  Hsueh-Chia Chang,et al.  Nonlinear waves on liquid film surfaces—I. Flooding in a vertical tube , 1986 .

[20]  Hsueh-Chia Chang,et al.  PEFLOQ: An algorithm for the bifurcational analysis of periodic solutions of autonomous systems , 1984 .

[21]  N. Brauner,et al.  Modeling of wavy flow in inclined thin films , 1983 .

[22]  N. Brauner,et al.  Characteristics of inclined thin films, waviness and the associated mass transfer , 1982 .

[23]  Paul F. Byrd,et al.  Handbook of elliptic integrals for engineers and scientists , 1971 .