Multiscale Modelling of Chemical Degradation Mechanisms in Porous Media with Evolving Microstructure

A prototypical reaction–diffusion system in a porous medium is considered, whose microstructure undergoes an evolution with respect to time. Employing the recently developed method of homogenization in domains with evolving microstructure, the limit problems are obtained. Besides the time-evolution aspect, attention is paid to the scaling of the material parameters with powers of the homogenization parameter arising from a nondimensionalization. The paper has two main focuses: One focus is numerical experiments for prototypical simplified problems, which qualitatively confirm the appropriateness of the scalings obtained from a nondimensionalization and show the influence of the evolution of the microstructure on the model output. The second main focus is the real-world problem concrete carbonation, which is considered as a typical application of the presented approach. Comparison of experimental data for concrete carbonation with the simulation results confirms the validity of the modelling approach.

[1]  Volodymyr Rybalko,et al.  Homogenized model of reaction-diffusion in a porous medium , 2003 .

[2]  H. Bhadeshia Diffusion , 1995, Theory of Transformations in Steels.

[3]  Mikhail Panfilov,et al.  Macroscale Models of Flow Through Highly Heterogeneous Porous Media , 2010 .

[4]  Scalings in homogenisation of reaction, diffusion and interfacial exchange in a two-phase medium , 2007 .

[5]  Malte A. Peter Homogenisation of a chemical degradation mechanism inducing an evolving microstructure , 2007 .

[6]  G. Allaire Homogenization and two-scale convergence , 1992 .

[7]  Alexander Steffens,et al.  Modeling carbonation for corrosion risk prediction of concrete structures , 2002 .

[8]  Willi Jäger,et al.  Diffusion, convection, adsorption, and reaction of chemicals in porous media , 1991 .

[9]  Renato Vitaliani,et al.  The carbonation of concrete and the mechanism of moisture, heat and carbon dioxide flow through porous materials , 1993 .

[10]  Malte A. Peter,et al.  Homogenisation in domains with evolving microstructure , 2007 .

[11]  Christof Eck Analysis of a Two-Scale Phase Field Model for Liquid-Solid Phase Transitions with Equiaxed Dendritic Microstructure , 2005, Multiscale Model. Simul..

[12]  Michael Böhm,et al.  A two-scale modelling approach to reaction-diffusion processes in porous materials , 2007 .

[13]  P. Donato,et al.  An introduction to homogenization , 2000 .

[14]  Michael Böhm,et al.  Different choices of scaling in homogenization of diffusion and interfacial exchange in a porous medium , 2008 .

[15]  Michael Böhm,et al.  A note on limitations of the use of accelerated concrete-carbonation tests for service-life predictions , 2005 .

[16]  Christof Eck,et al.  Homogenization of a Phase Field Model for Binary Mixtures , 2005, Multiscale Model. Simul..

[17]  H. Alber Evolving Microstructure and Homogenization , 2000 .

[18]  Michael Böhm,et al.  Competition of several carbonation reactions in concrete: a parametric study , 2008 .

[19]  Michael N. Fardis,et al.  A reaction engineering approach to the problem of concrete carbonation , 1989 .

[20]  R. Bruce Lindsay,et al.  Nonhomogeneous Media and Vibration Theory, by Enrique Sanchez‐Palencia , 1981 .

[21]  J. Marchand,et al.  Describing ion diffusion mechanisms in cement-based materials using the homogenization technique , 1999 .

[22]  Michael Böhm,et al.  Modelling and simulation of concrete carbonation with internal layers , 2005 .

[23]  T. Chaussadent Etat des lieux et reflexions sur la carbonatation du beton arme , 1999 .

[24]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[25]  Malte A. Peter,et al.  Coupled reaction–diffusion processes inducing an evolution of the microstructure: Analysis and homogenization , 2009 .

[26]  Robert H. Martin,et al.  A moving boundary problem modelling diffusion with nonlinear absorption , 1984 .

[27]  Dieter Bunte Zum karbonatisierungsbedingten Verlust der Dauerhaftigkeit von Außenbauteilen aus Stahlbeton , 1994 .

[28]  J. David Logan,et al.  Transport Modeling in Hydrogeochemical Systems , 2001 .

[29]  Pranay Goel,et al.  Homogenization of the Cell Cytoplasm: The Calcium Bidomain Equations , 2006, Multiscale Model. Simul..

[30]  J. Bear,et al.  Introduction to Modeling of Transport Phenomena in Porous Media , 1990 .