Sample-efficient L0-L2 constrained structure learning of sparse Ising models
暂无分享,去创建一个
Dileep George | Antoine Dedieu | Miguel L'azaro-Gredilla | A. Dedieu | Miguel L'azaro-Gredilla | Dileep George
[1] R. Mazumder,et al. Learning Sparse Classifiers: Continuous and Mixed Integer Optimization Perspectives , 2020, J. Mach. Learn. Res..
[2] E. Ising. Beitrag zur Theorie des Ferromagnetismus , 1925 .
[3] Andrea Montanari,et al. Which graphical models are difficult to learn? , 2009, NIPS.
[4] Colin J. Thompson,et al. Mathematical Statistical Mechanics , 1972 .
[5] A. Dedieu. Sparse (group) learning with Lipschitz loss functions: a unified analysis , 2019, ArXiv.
[6] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[7] Balas K. Natarajan,et al. Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..
[8] Radford M. Neal. Pattern Recognition and Machine Learning , 2007, Technometrics.
[9] J. Besag. Statistical Analysis of Non-Lattice Data , 1975 .
[10] B. McCoy,et al. The Importance of the Ising Model , 2012, 1203.1456.
[11] Bart P. G. Van Parys,et al. Sparse Classification and Phase Transitions: A Discrete Optimization Perspective , 2017 .
[12] A. Tsybakov,et al. Slope meets Lasso: Improved oracle bounds and optimality , 2016, The Annals of Statistics.
[13] Michael P. Friedlander,et al. Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..
[14] Alexandros G. Dimakis,et al. Sparse Logistic Regression Learns All Discrete Pairwise Graphical Models , 2018, NeurIPS.
[15] Michael Chertkov,et al. Optimal structure and parameter learning of Ising models , 2016, Science Advances.
[16] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[17] Hussein Hazimeh,et al. Fast Best Subset Selection: Coordinate Descent and Local Combinatorial Optimization Algorithms , 2018, Oper. Res..
[18] Eric R. Ziegel,et al. The Elements of Statistical Learning , 2003, Technometrics.
[19] P. Radchenko,et al. Subset Selection with Shrinkage: Sparse Linear Modeling When the SNR Is Low , 2017, Oper. Res..
[20] D. Bertsimas,et al. Best Subset Selection via a Modern Optimization Lens , 2015, 1507.03133.
[21] Michael Chertkov,et al. Interaction Screening: Efficient and Sample-Optimal Learning of Ising Models , 2016, NIPS.
[22] A. Tsybakov,et al. Aggregation for Gaussian regression , 2007, 0710.3654.
[23] Antoine Dedieu,et al. Error bounds for sparse classifiers in high-dimensions , 2018, AISTATS.
[24] Toshiyuki TANAKA. Mean-field theory of Boltzmann machine learning , 1998 .
[25] Marc Teboulle,et al. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..
[26] Max Welling,et al. Learning in Markov Random Fields with Contrastive Free Energies , 2005, AISTATS.
[27] J. Lafferty,et al. High-dimensional Ising model selection using ℓ1-regularized logistic regression , 2010, 1010.0311.
[28] Guy Bresler,et al. Efficiently Learning Ising Models on Arbitrary Graphs , 2014, STOC.
[29] L. Onsager. Crystal statistics. I. A two-dimensional model with an order-disorder transition , 1944 .
[30] P. Bickel,et al. SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.
[31] Martin J. Wainwright,et al. Minimax Rates of Estimation for High-Dimensional Linear Regression Over $\ell_q$ -Balls , 2009, IEEE Transactions on Information Theory.
[32] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[33] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[34] Yurii Nesterov,et al. Gradient methods for minimizing composite functions , 2012, Mathematical Programming.
[35] P. Rigollet. 18.S997: High Dimensional Statistics , 2015 .
[36] Dustin G. Mixon,et al. Certifying the Restricted Isometry Property is Hard , 2012, IEEE Transactions on Information Theory.