Effect of size and deformation on polarizabilities of carbon nanotubes from atomic increments

The interacting induced-dipole polarization model implemented in program POLAR is used for the calculation of the polarizability α. The method is tested with single-wall carbon nanotubes (SWNTs) as a function of radius and elliptical deformation. This work gives a partial success with the application of POLAR when compared with reference calculations performed with program PAPID. α follows a simple law. PAPID differentiates more effectively than POLAR among SWNTs with increasing radial deformation, a can be modified reversibly by external radial deformation. Different effective αeff are calculated for the atoms at the highest and lowest curvature sites. The difference between POLAR and PAPID is due to the different parameterization scheme used for the initial atomic polarizabilities.

[1]  Arthur I. Vogel,et al.  369. Physical properties and chemical constitution. Part XXIII. Miscellaneous compounds. Investigation of the so-called co-ordinate or dative link in esters of oxy-acids and in nitro-paraffins by molecular refractivity determinations. atomic, structural, and group parachors and refractivities , 1948 .

[2]  Christophe Voisin,et al.  Computation of accurate electronic molecular polarizabilities , 1992 .

[3]  Peter J. F. Harris,et al.  Carbon Nanotubes and Related Structures: New Materials for the Twenty-first Century , 1999 .

[4]  Benedict,et al.  Hybridization effects and metallicity in small radius carbon nanotubes. , 1994, Physical review letters.

[5]  M. Itkis,et al.  Chemistry of single-walled carbon nanotubes. , 2002, Accounts of chemical research.

[6]  R. Krupke,et al.  Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes , 2003, Science.

[7]  R. Smalley,et al.  Electronic Structure Control of Single-Walled Carbon Nanotube Functionalization , 2003, Science.

[8]  Francisco Torrens,et al.  Molecular polarizability of fullerenes and endohedral metallofullerenes , 2002 .

[9]  Judith C. Gallucci,et al.  COMPUTER SIMULATION OF PHOSPHORANE STRUCTURES , 1995 .

[10]  Phaedon Avouris,et al.  The effect of structural distortions on the electronic structure of carbon nanotubes , 1998 .

[11]  Jianping Lu,et al.  Carbon nanotubes and nanotube-based nano devices , 1998 .

[12]  L. Silberstein,et al.  VII. Molecular refractivity and atomic interaction , 1917 .

[13]  Francisco Torrens,et al.  Conformational aspects of some asymmetric Diels-Alder reactions. A molecular mechanics + polarization study , 1992 .

[14]  Judith C. Gallucci,et al.  Pentacoordinated molecules. 24. Computer simulation of phosphorane structures , 1977 .

[15]  T Yildirim,et al.  Tunable adsorption on carbon nanotubes. , 2001, Physical review letters.

[16]  S. Ciraci,et al.  Systematic ab initio study of curvature effects in carbon nanotubes , 2002, cond-mat/0203229.

[17]  H. Scheraga,et al.  Energy parameters in polypeptides. 9. Updating of geometrical parameters, nonbonded interactions, and hydrogen bond interactions for the naturally occurring amino acids , 1983 .

[18]  Francisco Torrens,et al.  Nature of FeIII-O2, FeII-CO and FeIII-CN complexes of hemoprotein models , 2003 .

[19]  J. R. Carl,et al.  Atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities , 1972 .

[20]  Benedict,et al.  Static polarizabilities of single-wall carbon nanotubes. , 1995, Physical review. B, Condensed matter.

[21]  M. Zheng,et al.  DNA-assisted dispersion and separation of carbon nanotubes , 2003, Nature materials.

[22]  Alexey Bezryadin,et al.  MULTIPROBE TRANSPORT EXPERIMENTS ON INDIVIDUAL SINGLE-WALL CARBON NANOTUBES , 1998 .

[23]  K. Mikkelsen,et al.  Static and Frequency-Dependent Polarizability Tensors for Carbon Nanotubes , 2000 .

[24]  Kenneth J. Miller,et al.  Calculation of the molecular polarizability tensor , 1990 .

[25]  S. Ciraci,et al.  Reversible band-gap engineering in carbon nanotubes by radial deformation , 2002 .

[26]  B. Thole Molecular polarizabilities calculated with a modified dipole interaction , 1981 .

[27]  Jin-ming Dong,et al.  Optical properties of carbon nanotubes , 1998 .

[28]  Robertson,et al.  Energetics of nanoscale graphitic tubules. , 1992, Physical review. B, Condensed matter.

[29]  Francisco Torrens,et al.  Polarization Force Fields for Peptides Implemented in ECEPP2 and MM2 , 2000 .

[30]  Francisco Torrens,et al.  Interacting induced dipoles polarization model for molecular polarizabilities. Reference molecules, amino acids and model peptides , 1999 .

[31]  Christophe Voisin,et al.  Determination of distributed polarizabilities to be used for peptide modeling , 1993 .

[32]  S. Ciraci,et al.  Variable and reversible quantum structures on a single carbon nanotube , 2000, cond-mat/0011309.

[33]  Norman L. Allinger,et al.  Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms , 1977 .