Probabilistic analysis of communities and inner roles in networks: Bayesian generative models and approximate inference

[1]  A. Iamnitchi,et al.  Identifying high betweenness centrality nodes in large social networks , 2013, Social Network Analysis and Mining.

[2]  Tetsuya Yoshida Weighted line graphs for overlapping community discovery , 2013, Social Network Analysis and Mining.

[3]  Ala Mahdavi,et al.  Application of data mining methods for link prediction in social networks , 2013, Social Network Analysis and Mining.

[4]  Tetsuya Yoshida,et al.  Weighted Line Graphs for Overlapping Community Discovery and their Evaluation , 2012, ISIP.

[5]  Gianni Costa,et al.  A Bayesian Hierarchical Approach for Exploratory Analysis of Communities and Roles in Social Networks , 2012, 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining.

[6]  David B. Dunson,et al.  Probabilistic topic models , 2011, KDD '11 Tutorials.

[7]  Boleslaw K. Szymanski,et al.  Overlapping community detection in networks: The state-of-the-art and comparative study , 2011, CSUR.

[8]  Nicola Barbieri,et al.  Modeling item selection and relevance for accurate recommendations: a bayesian approach , 2011, RecSys '11.

[9]  Youngdo Kim,et al.  Map equation for link communities. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Yong-Yeol Ahn,et al.  Topological Cluster Analysis Reveals the Systemic Organization of the Caenorhabditis elegans Connectome , 2011, PLoS Comput. Biol..

[11]  Mark E. J. Newman,et al.  An efficient and principled method for detecting communities in networks , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Huaiyu Wan,et al.  A fast and reasonable method for community detection with adjustable extent of overlapping , 2010, 2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering.

[13]  T. S. Evans,et al.  Clique graphs and overlapping communities , 2010, ArXiv.

[14]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[15]  Einoshin Suzuki,et al.  Discovering Community-Oriented Roles of Nodes in a Social Network , 2010, DaWak.

[16]  E. David,et al.  Networks, Crowds, and Markets: Reasoning about a Highly Connected World , 2010 .

[17]  Jure Leskovec,et al.  Empirical comparison of algorithms for network community detection , 2010, WWW '10.

[18]  Philip Resnik,et al.  GIBBS SAMPLING FOR THE UNINITIATED , 2010 .

[19]  Christos Faloutsos,et al.  HCDF: A Hybrid Community Discovery Framework , 2010, SDM.

[20]  T.S.Evans,et al.  Line graphs of weighted networks for overlapping communities , 2009, 0912.4389.

[21]  P. Bickel,et al.  A nonparametric view of network models and Newman–Girvan and other modularities , 2009, Proceedings of the National Academy of Sciences.

[22]  Andrea Lancichinetti,et al.  Community detection algorithms: a comparative analysis: invited presentation, extended abstract , 2009, VALUETOOLS.

[23]  R. Lambiotte,et al.  Line graphs, link partitions, and overlapping communities. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Mehran Sahami,et al.  Text Mining: Classification, Clustering, and Applications , 2009 .

[25]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[26]  Andrea Lancichinetti,et al.  Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Sune Lehmann,et al.  Link communities reveal multiscale complexity in networks , 2009, Nature.

[28]  Tina Eliassi-Rad,et al.  Applying latent dirichlet allocation to group discovery in large graphs , 2009, SAC '09.

[29]  Mason A. Porter,et al.  Communities in Networks , 2009, ArXiv.

[30]  Salvatore J. Stolfo,et al.  Segmentation and Automated Social Hierarchy Detection through Email Network Analysis , 2009, WebKDD/SNA-KDD.

[31]  Pang-Ning Tan,et al.  Exploration of Link Structure and Community-Based Node Roles in Network Analysis , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[32]  Andrew McCallum,et al.  Topic and Role Discovery in Social Networks with Experiments on Enron and Academic Email , 2007, J. Artif. Intell. Res..

[33]  P. Tan,et al.  Node roles and community structure in networks , 2007, WebKDD/SNA-KDD '07.

[34]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[35]  Edoardo M. Airoldi,et al.  Mixed Membership Stochastic Blockmodels , 2007, NIPS.

[36]  John Yen,et al.  An LDA-based Community Structure Discovery Approach for Large-Scale Social Networks , 2007, 2007 IEEE Intelligence and Security Informatics.

[37]  E A Leicht,et al.  Mixture models and exploratory analysis in networks , 2006, Proceedings of the National Academy of Sciences.

[38]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[39]  S. Fortunato,et al.  Resolution limit in community detection , 2006, Proceedings of the National Academy of Sciences.

[40]  Hongyuan Zha,et al.  Probabilistic models for discovering e-communities , 2006, WWW '06.

[41]  Leon Danon,et al.  Comparing community structure identification , 2005, cond-mat/0505245.

[42]  Mark Newman,et al.  Detecting community structure in networks , 2004 .

[43]  M. Newman Fast algorithm for detecting community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Claudio Castellano,et al.  Defining and identifying communities in networks. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[45]  M. Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[47]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[49]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[50]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[51]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[52]  George E. P. Box,et al.  Bayesian Inference in Statistical Analysis: Box/Bayesian , 1992 .

[53]  Alex Pothen,et al.  PARTITIONING SPARSE MATRICES WITH EIGENVECTORS OF GRAPHS* , 1990 .

[54]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[55]  Leonard M. Freeman,et al.  A set of measures of centrality based upon betweenness , 1977 .

[56]  Dennis V. Lindley,et al.  An Introduction to Bayesian Inference and Decision , 1974 .

[57]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[58]  Brian W. Kernighan,et al.  An efficient heuristic procedure for partitioning graphs , 1970, Bell Syst. Tech. J..

[59]  Nicola Barbieri,et al.  Balancing Prediction and Recommendation Accuracy: Hierarchical Latent Factors for Preference Data , 2012, SDM.

[60]  Charu C. Aggarwal,et al.  Social Network Data Analytics , 2011 .

[61]  Radford M. Neal Probabilistic Inference Using Markov Chain Monte Carlo Methods , 2011 .

[62]  Tom A. B. Snijders,et al.  Social Network Analysis , 2011, International Encyclopedia of Statistical Science.

[63]  J. Kleinberg,et al.  Networks, Crowds, and Markets: Index , 2010 .

[64]  David Easley,et al.  Networks, Crowds, and Markets: Network Dynamics: Structural Models , 2010 .

[65]  Gregor Heinrich Parameter estimation for text analysis , 2009 .

[66]  Eric D. Kolaczyk,et al.  Statistical Analysis of Network Data , 2009 .

[67]  A. Banerjee,et al.  Social Topic Models for Community Extraction , 2008 .

[68]  C. Elkan,et al.  Topic Models , 2008 .

[69]  N. Chatterjee,et al.  Understanding the mind of a worm: hierarchical network structure underlying nervous system function in C. elegans. , 2008, Progress in brain research.

[70]  Mark E. J. Newman,et al.  Structure and Dynamics of Networks , 2009 .

[71]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[72]  E. B. Andersen,et al.  Information Science and Statistics , 1986 .

[73]  H. White,et al.  STRUCTURAL EQUIVALENCE OF INDIVIDUALS IN SOCIAL NETWORKS , 1977 .