Robust Performance Analysis of Uncertain LTI Systems: Dual LMI Approach and Verifications for Exactness

This paper addresses robust performance analysis problems of LTI systems affected by real parametric uncertainties. These problems, known also as a special class of structured singular value computation problems, are inherently intractable (NP-hard problems). As such intensive research effort has been made to obtain computationally tractable and less conservative analysis conditions, where linear matrix inequality (LMI) plays an important role. Nevertheless, since LMI-based conditions are expected to be conservative in general, it is often the case that we cannot conclude anything directly if the LMI at hand turns out to be infeasible. This motivates us to consider the dual of the LMI and examine the structure of the dual solution, which does exist if the primal LMI is infeasible. By pursuing this direction, in this paper, we provide a rank condition on the dual solution matrix under which we can conclude that the underlying robust performance is never attained. In particular, a set of uncertain parameters that violates the specified performance can readily be obtained. The key idea to derive these results comes from simultaneous diagonalizability property of commuting diagonalizable matrices. The block-moment matrix structure of the dual variable plays an essential role to make good use of this property.

[1]  Tetsuya Iwasaki,et al.  Parameter-dependent Lyapunov function for exact stability analysis of single-parameter dependent LTI systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[2]  T. Iwasaki,et al.  Generalized S-procedure and finite frequency KYP lemma , 2000 .

[3]  Shinji Hara,et al.  Generalized KYP lemma: unified frequency domain inequalities with design applications , 2005, IEEE Transactions on Automatic Control.

[4]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[5]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[6]  Gjerrit Meinsma,et al.  A Dual Formulation of Mixed and on the Losslessness of Scaling , 1998 .

[7]  Didier Henrion,et al.  Convergent relaxations of polynomial matrix inequalities and static output feedback , 2006, IEEE Transactions on Automatic Control.

[8]  C. W. Scherer,et al.  Relaxations for Robust Linear Matrix Inequality Problems with Verifications for Exactness , 2005, SIAM J. Matrix Anal. Appl..

[9]  Pierre-Alexandre Bliman,et al.  A Convex Approach to Robust Stability for Linear Systems with Uncertain Scalar Parameters , 2003, SIAM J. Control. Optim..

[10]  Tomomichi Hagiwara,et al.  A dilated LMI approach to robust performance analysis of linear time-invariant uncertain systems , 2003, Proceedings of the 2003 American Control Conference, 2003..

[11]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[12]  S. Hara,et al.  Well-posedness of feedback systems: insights into exact robustness analysis and approximate computations , 1998, IEEE Trans. Autom. Control..

[13]  Carsten W. Scherer,et al.  Matrix Sum-of-Squares Relaxations for Robust Semi-Definite Programs , 2006, Math. Program..

[14]  Tomomichi Hagiwara,et al.  A dilated LMI approach to robust performance analysis of linear time-invariant uncertain systems , 2005, Autom..

[15]  V. Yakubovich Dichotomy and absolute stability of nonlinear systems with periodically nonstationary linear part , 1988 .

[16]  Carsten W. Scherer,et al.  LPV control and full block multipliers , 2001, Autom..

[17]  Tetsuya Iwasaki,et al.  LPV system analysis via quadratic separator for uncertain implicit systems , 2001, IEEE Trans. Autom. Control..

[18]  Andrew Packard,et al.  The complex structured singular value , 1993, Autom..

[19]  Venkataramanan Balakrishnan,et al.  Semidefinite programming duality and linear time-invariant systems , 2003, IEEE Trans. Autom. Control..

[20]  P. Peres,et al.  Stability of polytopes of matrices via affine parameter-dependent lyapunov functions : Asymptotically exact LMI conditions , 2005 .

[21]  Carsten W. Scherer,et al.  LMI Relaxations in Robust Control , 2006, Eur. J. Control.

[22]  Tomomichi Hagiwara,et al.  On the degree of polynomial parameter-dependent Lyapunov functions for robust stability of single parameter-dependent LTI systems: A counter-example to Barmish's conjecture , 2006, Autom..

[23]  M. Fu,et al.  A dual formulation of mixed μ and on the losslessness of (D, G) scaling , 1997, IEEE Trans. Autom. Control..

[24]  A. Rantzer On the Kalman-Yakubovich-Popov lemma , 1996 .

[25]  Tomomichi Hagiwara Inertia approach to the Hamiltonian eigenvalue tests for frequency-domain inequality conditions , 2005 .

[26]  B. Ross Barmish,et al.  New Tools for Robustness of Linear Systems , 1993 .

[27]  Laurent El Ghaoui,et al.  Robust Solutions to Uncertain Semidefinite Programs , 1998, SIAM J. Optim..

[28]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[29]  J. Doyle,et al.  Essentials of Robust Control , 1997 .

[30]  Toshiharu Sugie,et al.  New upper bound of the real /spl mu/ based on the parameter dependent multiplier , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[31]  Pll Siinksen,et al.  Control , 1999, Diabetic medicine : a journal of the British Diabetic Association.

[32]  J. Lasserre,et al.  On parameter-dependent Lyapunov functions for robust stability of linear systems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[33]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[34]  Gjerrit Meinsma,et al.  Rank-one LMIs and Lyapunov's inequality , 2001, IEEE Trans. Autom. Control..

[35]  Tomomichi Hagiwara,et al.  Robust Performance Analysis of Uncertain LTI Systems: Dual LMI Approach and Verifications for Exactness , 2007, IEEE Transactions on Automatic Control.

[36]  M. Fu,et al.  A dual formulation of mixed μ and on the losslessness of (D, G) scaling , 1997, IEEE Trans. Autom. Control..

[37]  Graziano Chesi,et al.  Polynomially parameter-dependent Lyapunov functions for robust stability of polytopic systems: an LMI approach , 2005, IEEE Transactions on Automatic Control.

[38]  J. Lasserre,et al.  Detecting global optimality and extracting solutions in GloptiPoly , 2003 .

[39]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[40]  Pierre-Alexandre Bliman,et al.  An existence result for polynomial solutions of parameter-dependent LMIs , 2004, Syst. Control. Lett..

[41]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..