A Three-Spring Pseudorigid-Body Model for Soft Joints With Significant Elongation Effects

[1]  Hai-Jun Su,et al.  A parameter optimization framework for determining the pseudo-rigid-body model of cantilever-beams , 2015 .

[2]  Larry L. Howell,et al.  Waterbomb base: a symmetric single-vertex bistable origami mechanism , 2014 .

[3]  H. Su,et al.  DNA origami compliant nanostructures with tunable mechanical properties. , 2014, ACS nano.

[4]  Ivo Senjanović,et al.  Physical insight into Timoshenko beam theory and its modification with extension , 2013 .

[5]  Satyandra K. Gupta,et al.  Characterization and Modeling of Elastomeric Joints in Miniature Compliant Mechanisms , 2012 .

[6]  Aimei Zhang,et al.  A Comprehensive Elliptic Integral Solution to the Large Deflection Problems of Thin Beams in Compliant Mechanisms , 2012 .

[7]  Aaron M. Dollar,et al.  The Smooth Curvature Model: An Efficient Representation of Euler–Bernoulli Flexures as Robot Joints , 2012, IEEE Transactions on Robotics.

[8]  Andrew Y. Ng,et al.  A low-cost compliant 7-DOF robotic manipulator , 2011, 2011 IEEE International Conference on Robotics and Automation.

[9]  Jonathan B. Hopkins,et al.  Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint topology (FACT). Part II: Practice , 2010 .

[10]  N. Tolou,et al.  A Semianalytical Approach to Large Deflections in Compliant Beams under Point Load , 2009 .

[11]  Hai-Jun Su,et al.  A Pseudorigid-Body 3R Model for Determining Large Deflection of Cantilever Beams Subject to Tip Loads , 2009 .

[12]  J. N. Reddy,et al.  A microstructure-dependent Timoshenko beam model based on a modified couple stress theory , 2008 .

[13]  Shorya Awtar,et al.  Characteristics of Beam-Based Flexure Modules , 2007 .

[14]  A.M. Dollar,et al.  A robust compliant grasper via shape deposition manufacturing , 2006, IEEE/ASME Transactions on Mechatronics.

[15]  Jonathan E. Clark,et al.  Fast and Robust: Hexapedal Robots via Shape Deposition Manufacturing , 2002 .

[16]  Mohammad H. Dado Variable parametric pseudo-rigid-body model for large-deflection beams with end loads , 2001 .

[17]  J. R. Hutchinson Shear coefficients for Timoshenko beam theory , 2001 .

[18]  Uri M. Ascher,et al.  Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .

[19]  Mary Frecker,et al.  Topological synthesis of compliant mechanisms using multi-criteria optimization , 1997 .

[20]  Gaston H. Gonnet,et al.  On the LambertW function , 1996, Adv. Comput. Math..

[21]  A. Midha,et al.  Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms , 1995 .

[22]  Larry L. Howell,et al.  A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots , 1994 .

[23]  AN ELASTIC FINITE DISPLACEMENT ANALYSIS OF PLANE BEAMS WITH AND WITHOUT SHEAR DEFORMATION , 1986 .

[24]  J. Jensen On the shear coefficient in Timoshenko's beam theory , 1983 .

[25]  G. Cowper The Shear Coefficient in Timoshenko’s Beam Theory , 1966 .

[26]  S. Timoshenko,et al.  X. On the transverse vibrations of bars of uniform cross-section , 1922 .

[27]  S. Timoshenko,et al.  LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars , 1921 .