Sum-of-Products with Default Values: Algorithms and Complexity Results

Weighted Counting for Constraint Satisfaction with Default Values (#CSPD) is a powerful special case of the sum-of-products problem that admits succinct encodings of #CSP, #SAT, and inference in probabilistic graphical models. We investigate #CSPD under the fundamental parameter of incidence treewidth (i.e., the treewidth of the incidence graph of the constraint hypergraph). We show that if the incidence treewidth is bounded, then #CSPD can be solved in polynomial time. More specifically, we show that the problem is fixed-parameter tractable for the combined parameter incidence treewidth, domain size, and support size (the maximum number of non-default tuples in a constraint), generalizing a known result on the fixed-parameter tractability of #CSPD under the combined parameter primal treewidth and domain size. We further prove that the problem is not fixed-parameter tractable if any of the three components is dropped from the parameterization.

[1]  Georg Gottlob,et al.  Hypertree Decompositions: Structure, Algorithms, and Applications , 2005, WG.

[2]  Rina Dechter,et al.  Bucket Elimination: A Unifying Framework for Reasoning , 1999, Artif. Intell..

[3]  Phokion G. Kolaitis,et al.  Conjunctive-Query Containment and Constraint Satisfaction , 2000, J. Comput. Syst. Sci..

[4]  Stefan Mengel,et al.  Understanding Model Counting for beta-acyclic CNF-formulas , 2015, STACS.

[5]  Hubie Chen,et al.  Constraint satisfaction with succinctly specified relations , 2010, J. Comput. Syst. Sci..

[6]  Javier Larrosa,et al.  Unifying tree decompositions for reasoning in graphical models , 2005, Artif. Intell..

[7]  Martin C. Cooper,et al.  Tractability in constraint satisfaction problems: a survey , 2016, Constraints.

[8]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[9]  David Barber,et al.  Bayesian reasoning and machine learning , 2012 .

[10]  Krzysztof Pietrzak,et al.  On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems , 2003, J. Comput. Syst. Sci..

[11]  Reinhard Diestel,et al.  Graph Theory, 4th Edition , 2012, Graduate texts in mathematics.

[12]  Georg Gottlob,et al.  Fixed-Parameter Complexity in AI and Nonmonotonic Reasoning , 1999, LPNMR.

[13]  Ton Kloks Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.

[14]  Toniann Pitassi,et al.  Solving #SAT and Bayesian Inference with Backtracking Search , 2014, J. Artif. Intell. Res..

[15]  Michael R. Fellows,et al.  Review of: Fundamentals of Parameterized Complexity by Rodney G. Downey and Michael R. Fellows , 2015, SIGA.

[16]  Georg Gottlob,et al.  Fixed-Parameter Algorithms For Artificial Intelligence, Constraint Satisfaction and Database Problems , 2007, Comput. J..

[17]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[18]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[19]  Stefan Szeider,et al.  Model Counting for Formulas of Bounded Clique-Width , 2013, ISAAC.

[20]  Daniël Paulusma,et al.  Model Counting for CNF Formulas of Bounded Modular Treewidth , 2015, Algorithmica.

[21]  Ge Xia,et al.  Strong computational lower bounds via parameterized complexity , 2006, J. Comput. Syst. Sci..

[22]  Atri Rudra,et al.  FAQ: Questions Asked Frequently , 2015, PODS.

[23]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[24]  Michal Pilipczuk,et al.  A ck n 5-Approximation Algorithm for Treewidth , 2016, SIAM J. Comput..

[25]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[26]  Johann A. Makowsky,et al.  Counting truth assignments of formulas of bounded tree-width or clique-width , 2008, Discret. Appl. Math..

[27]  Marko Samer,et al.  Algorithms for propositional model counting , 2007, J. Discrete Algorithms.

[28]  David A. Cohen,et al.  Constraint Representations and Structural Tractability , 2009, CP.

[29]  Marko Samer,et al.  Constraint satisfaction with bounded treewidth revisited , 2010, J. Comput. Syst. Sci..