Crack tip plasticity in single crystal UO2: Atomistic simulations

Abstract The fracture behavior of single crystal uranium dioxide under mode-I loading is studied using molecular dynamics simulations at room temperature. The initial cracks are introduced as elliptical notches on either {1 1 1} or {1 1 0} planes. Two crack tip shielding mechanisms, dislocation emission and metastable phase transformation are identified. Crack extension is observed for cracks residing on {1 1 1} plane only. The dislocations have a Burgers vector of 〈1 1 0〉/2 and glide on {1 0 0} planes. Two metastable phases, Rutile and Scrutinyite, are identified during the phase transformation, and their relative stability is confirmed by separate density-functional-theory calculations. Examination of stress field near the crack tips reveals that dislocation emission is not as an effective shielding mechanism as the phase transformation. The formation of new phases may effectively shield the crack if all phase interfaces formed near the crack tips are coherent, as in the case of cracks residing on {1 1 0} planes.

[1]  M. Grujicic,et al.  Atomistic simulation study of the effect of martensitic transformation volume change on crack-tip material evolution and fracture toughness , 1997 .

[2]  Xiang-Yang Liu,et al.  Observation of continuous and reversible bcc–fcc phase transformation in Ag/V multilayers , 2011 .

[3]  Stress-induced phase transformation in nanocrystalline UO2 , 2009 .

[4]  Baidurya Bhattacharya,et al.  The role of atomistic simulations in probing the small-scale aspects of fracture—a case study on a single-walled carbon nanotube , 2005 .

[5]  Ansar Ahmad,et al.  Fracture properties of sintered UO2 ceramic pellets with duplex microstructure , 2007 .

[6]  S. Phillpot,et al.  Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r−1 summation , 1999 .

[7]  Chenglung Chen,et al.  Density functional theory calculations of dense TiO2 polymorphs: implication for visible-light-responsive photocatalysts. , 2005, The journal of physical chemistry. B.

[8]  S. Glasstone,et al.  Nuclear Reactor Engineering , 1955 .

[9]  H. Matzke,et al.  The surface energy of UO2 as determined by hertzian indentation , 1980 .

[10]  H. S. Kamath,et al.  Classical molecular dynamics simulation of UO2 to predict thermophysical properties , 2003 .

[11]  P. Shen,et al.  Nanometer-Size α-PbO2-Type TiO2 in Garnet: A Thermobarometer for Ultrahigh-Pressure Metamorphism , 2000 .

[12]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[13]  C. Catlow,et al.  Point defect and electronic properties of uranium dioxide , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[14]  Yasushi Shibuta,et al.  A molecular dynamics study of the fcc–bcc phase transformation kinetics of iron , 2008 .

[15]  Marc Hou,et al.  Comparison of interatomic potentials for UO2. Part I: Static calculations , 2007 .

[16]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[17]  A. Heuer,et al.  Plastic deformation in nonstoichiometric UO2 + x single crystals—II. Deformation at high temperatures , 1988 .

[18]  H. Furuya,et al.  Effect of Temperature and Deformation Rate on Fracture Strength of Sintered Uranium Dioxide , 1979 .

[19]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[20]  Paul C. Millett,et al.  PERCOLATION ON GRAIN BOUNDARY NETWORKS: APPLICATION TO FISSION GAS RELEASE IN NUCLEAR FUELS , 2012 .

[21]  C. L. Bishop,et al.  Strain fields and line energies of dislocations in uranium dioxide , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[22]  B. Meredig,et al.  Method for locating low-energy solutions within DFT+U , 2010 .

[23]  Julian D. Gale,et al.  Quantum mechanical vs. empirical potential modeling of uranium dioxide (UO2) surfaces: (111), (110), and (100) , 2006 .

[24]  K. Idemitsu,et al.  Evaluation of melting point of UO2 by molecular dynamics simulation , 2009 .

[25]  T. L. Bihan,et al.  Behaviour of Actinide Dioxides under Pressure: UO2 and ThO2 , 2004 .

[26]  N. Igata,et al.  Fracture stress and elastic modulus of uranium dioxide including excess oxygen , 1973 .

[27]  Boris Dorado,et al.  Stability of oxygen point defects in UO 2 by first-principles DFT + U calculations: Occupation matrix control and Jahn-Teller distortion , 2010 .

[28]  Adrian P. Sutton,et al.  Effect of Mott-Hubbard correlations on the electronic structure and structural stability of uranium dioxide , 1997 .

[29]  H. Stehle,et al.  Uranium dioxide properties for LWR fuel rods , 1975 .

[30]  C. Yust,et al.  On the observation of lattice and grain boundary dislocations in UO2 deformed at high temperatures , 1973 .

[31]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[32]  Blas P. Uberuaga,et al.  U and Xe transport in UO2±x: Density functional theory calculations , 2011 .

[33]  Kazuhiro Yamada,et al.  Evaluation of thermal properties of uranium dioxide by molecular dynamics , 2000 .

[34]  B. Uberuaga,et al.  The role of grain boundary structure in stress-induced phase transformation in UO2 , 2009 .

[35]  Haiyi Liang,et al.  Size-dependent elasticity of nanowires: Nonlinear effects , 2005 .

[36]  H. Matzke,et al.  Oxide fuel transients , 1989 .

[37]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[38]  Hui-Tian Wang,et al.  Unusual compression behavior of TiO2 polymorphs from first principles , 2010 .

[39]  K. Gall,et al.  Atomistic simulation of the structure and elastic properties of gold nanowires , 2004 .

[40]  Wolf,et al.  Reconstruction of NaCl surfaces from a dipolar solution to the Madelung problem. , 1992, Physical review letters.

[41]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[42]  Bernard Amadon,et al.  DFT+U calculations of the ground state and metastable states of uranium dioxide , 2009 .

[43]  Michael F. Ashby,et al.  Overview no. 5: Fracture-mechanism maps for materials which cleave: F.C.C., B.C.C. and H.C.P. metals and ceramics , 1979 .

[44]  R. Valiev,et al.  Shear-induced α→γ transformation in nanoscale Fe-C composite , 2006 .

[45]  J. K. Ghosh,et al.  Fracture toughness and fracture surface energy of sintered uranium dioxide fuel pellets , 1987 .

[46]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[47]  Masaomi Oguma,et al.  Microstructure effects on fracture strength of UO2 fuel pellets. , 1982 .

[48]  Marc Hou,et al.  Comparison of interatomic potentials for UO2. Part II: Molecular dynamics simulations , 2008 .

[49]  A. G. Evans,et al.  The strength and fracture of stoichiometric polycrystalline UO2 , 1969 .

[50]  H. C. Andersen,et al.  Molecular dynamics study of melting and freezing of small Lennard-Jones clusters , 1987 .