Dynamic causal modeling for EEG and MEG

We present a review of dynamic causal modeling (DCM) for magneto‐ and electroencephalography (M/EEG) data. DCM is based on a spatiotemporal model, where the temporal component is formulated in terms of neurobiologically plausible dynamics. Following an intuitive description of the model, we discuss six recent studies, which use DCM to analyze M/EEG and local field potentials. These studies illustrate how DCM can be used to analyze evoked responses (average response in time), induced responses (average response in time‐frequency), and steady‐state responses (average response in frequency). Bayesian model comparison plays a critical role in these analyses, by allowing one to compare equally plausible models in terms of their model evidence. This approach might be very useful in M/EEG research; where correlations among spatial and neuronal model parameter estimates can cause uncertainty about which model best explains the data. Bayesian model comparison resolves these uncertainties in a principled and formal way. We suggest that DCM and Bayesian model comparison provides a useful way to test hypotheses about distributed processing in the brain, using electromagnetic data. Hum Brain Mapp, 2009. © 2009 Wiley‐Liss, Inc.

[1]  R. Näätänen,et al.  Auditory frequency discrimination and event-related potentials. , 1985, Electroencephalography and clinical neurophysiology.

[2]  M. Scherg,et al.  Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. , 1985, Electroencephalography and clinical neurophysiology.

[3]  A. Gaillard,et al.  Problems and paradigms in ERP research , 1988, Biological Psychology.

[4]  Trevor W. Robbins,et al.  Isolation rearing of rats produces a deficit in prepulse inhibition of acoustic startle similar to that in schizophrenia , 1993, Biological Psychiatry.

[5]  G. Karmos,et al.  Adaptive modeling of the unattended acoustic environment reflected in the mismatch negativity event-related potential , 1996, Brain Research.

[6]  O. Bertrand,et al.  Oscillatory gamma activity in humans and its role in object representation , 1999, Trends in Cognitive Sciences.

[7]  R. Leahy,et al.  EEG and MEG: forward solutions for inverse methods , 1999, IEEE Transactions on Biomedical Engineering.

[8]  W. Klimesch EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis , 1999, Brain Research Reviews.

[9]  B. Gähwiler,et al.  Inhibition of uptake unmasks rapid extracellular turnover of glutamate of nonvesicular origin. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[10]  K. Alho,et al.  Separate Time Behaviors of the Temporal and Frontal Mismatch Negativity Sources , 2000, NeuroImage.

[11]  I. Winkler,et al.  Dynamic sensory updating in the auditory system. , 2001, Brain research. Cognitive brain research.

[12]  E. Schröger,et al.  Differential Contribution of Frontal and Temporal Cortices to Auditory Change Detection: fMRI and ERP Results , 2002, NeuroImage.

[13]  Erich Schröger,et al.  Prefrontal cortex involvement in preattentive auditory deviance detection: neuroimaging and electrophysiological evidence , 2003, NeuroImage.

[14]  Hans-Christian Pape,et al.  Amygdalar and Hippocampal Theta Rhythm Synchronization During Fear Memory Retrieval , 2003, Science.

[15]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[16]  Karl J. Friston,et al.  Comparing dynamic causal models , 2004, NeuroImage.

[17]  Ben H. Jansen,et al.  Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns , 1995, Biological Cybernetics.

[18]  Fetsje Bijma,et al.  The coupled dipole model: an integrated model for multiple MEG/EEG data sets , 2004, NeuroImage.

[19]  B. Jemel,et al.  Mismatch Negativity Results from Bilateral Asymmetric Dipole Sources in the Frontal and Temporal Lobes , 2004, Brain Topography.

[20]  Matti S. Hämäläinen,et al.  Dipole modelling of MEG rhythms in time and frequency domains , 2005, Brain Topography.

[21]  A T Brady,et al.  Hypoglutamatergia in the rat medial prefrontal cortex in two models of schizophrenia , 2005 .

[22]  Maria Puopolo,et al.  Behavioral responses of 129/Sv, C57BL/6J and DBA/2J mice to a non-predator aversive olfactory stimulus. , 2005, Acta neurobiologiae experimentalis.

[23]  John R. Terry,et al.  A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. , 2006, Cerebral cortex.

[24]  P. Hagoort,et al.  Oscillatory neuronal dynamics during language comprehension. , 2006, Progress in brain research.

[25]  Diego Clonda,et al.  Bayesian spatio-temporal approach for EEG source reconstruction: conciliating ECD and distributed models , 2006, IEEE Transactions on Biomedical Engineering.

[26]  Matthias M. Müller,et al.  Repetition suppression of induced gamma band responses is eliminated by task switching , 2006, The European journal of neuroscience.

[27]  Karl J. Friston,et al.  Dynamic causal modelling of evoked responses in EEG/MEG with lead field parameterization , 2006, NeuroImage.

[28]  John R. Terry,et al.  On the genesis of spike-wave oscillations in a mean-field model of human thalamic and corticothalamic dynamics , 2006 .

[29]  John S George,et al.  Improving source detection and separation in a spatiotemporal Bayesian inference dipole analysis. , 2006, Physics in medicine and biology.

[30]  Karl J. Friston,et al.  Dynamic causal modeling of evoked responses in EEG and MEG , 2006, NeuroImage.

[31]  Nelson J. Trujillo-Barreto,et al.  Realistically Coupled Neural Mass Models Can Generate EEG Rhythms , 2007, Neural Computation.

[32]  Karl J. Friston,et al.  Dynamic causal modelling of evoked responses: The role of intrinsic connections , 2007, NeuroImage.

[33]  Joachim Gross,et al.  Gamma Oscillations in Human Primary Somatosensory Cortex Reflect Pain Perception , 2007, PLoS biology.

[34]  Jouko Lampinen,et al.  Automatic relevance determination based hierarchical Bayesian MEG inversion in practice , 2007, NeuroImage.

[35]  J. Kaiser,et al.  Human gamma-frequency oscillations associated with attention and memory , 2007, Trends in Neurosciences.

[36]  Karl J. Friston,et al.  Dynamic causal modelling of evoked potentials: A reproducibility study , 2007, NeuroImage.

[37]  Jouko Lampinen,et al.  Hierarchical Bayesian estimates of distributed MEG sources: Theoretical aspects and comparison of variational and MCMC methods , 2007, NeuroImage.

[38]  P. Brown Abnormal oscillatory synchronisation in the motor system leads to impaired movement , 2007, Current Opinion in Neurobiology.

[39]  William D. Penny,et al.  Robust Bayesian general linear models , 2007, NeuroImage.

[40]  Hagai Attias,et al.  A probabilistic algorithm integrating source localization and noise suppression for MEG and EEG data , 2006, NeuroImage.

[41]  Robert Oostenveld,et al.  Population activity in the human dorsal pathway predicts the accuracy of visual motion detection. , 2007, Journal of neurophysiology.

[42]  Karl J. Friston,et al.  Evoked brain responses are generated by feedback loops , 2007, Proceedings of the National Academy of Sciences.

[43]  Karl J. Friston,et al.  a K.E. Stephan, a R.B. Reilly, , 2007 .

[44]  Jouko Lampinen,et al.  Bayesian inverse analysis of neuromagnetic data using cortically constrained multiple dipoles , 2007, Human brain mapping.

[45]  Hagai Attias,et al.  Probabilistic algorithms for MEG/EEG source reconstruction using temporal basis functions learned from data , 2008, NeuroImage.

[46]  Karl J. Friston,et al.  Dynamic causal modelling of induced responses , 2008, NeuroImage.

[47]  Karl J. Friston,et al.  Variational Bayesian inversion of the equivalent current dipole model in EEG/MEG , 2008, NeuroImage.

[48]  Nelson J. Trujillo-Barreto,et al.  Biophysical model for integrating neuronal activity, EEG, fMRI and metabolism , 2008, NeuroImage.

[49]  Karl J. Friston,et al.  Bayesian estimation of synaptic physiology from the spectral responses of neural masses , 2008, NeuroImage.

[50]  Karl J. Friston,et al.  Dynamic causal modeling for EEG and MEG , 2009, Human brain mapping.

[51]  Karl J. Friston,et al.  Multiple sparse priors for the M/EEG inverse problem , 2008, NeuroImage.

[52]  Karl J. Friston,et al.  The functional anatomy of the MMN: A DCM study of the roving paradigm , 2008, NeuroImage.

[53]  Karl J. Friston,et al.  Population dynamics: Variance and the sigmoid activation function , 2008, NeuroImage.

[54]  Karl J. Friston,et al.  Dynamical causal modelling for M/EEG: Spatial and temporal symmetry constraints , 2009, NeuroImage.

[55]  Raymond J. Dolan,et al.  Dynamic causal models of steady-state responses , 2009, NeuroImage.

[56]  Karl J. Friston,et al.  Population dynamics under the Laplace assumption , 2009, NeuroImage.