Characteristics of vapor–liquid–solid grown silicon nanowire solar cells

We report fabrication and characterization of solar cells based on vapor–liquid–solid (VLS) grown silicon nanowires (NWs) that form core–shell radial p–n junction structures. We observe efficiency enhancement due to the presence of the NWs that increase the light trapping within the device, while the use of gold as VLS catalyst results in increased carrier recombination within the wires. From the spectral efficiency data, we identify that the surface recombination effect becomes more significant in the large surface area NW cells. To remedy this issue we demonstrate the efficacy of a highly conformal Al2O3 film grown by atomic layer deposition to serve as surface passivation layer. This work highlights the key issues confronted by NW-based solar cells grown by VLS technique.

[1]  Alexander A. Balandin,et al.  Intermediate-band solar cells based on quantum dot supracrystals , 2007 .

[2]  R. M. Tromp,et al.  The influence of the surface migration of gold on the growth of silicon nanowires , 2006, Nature.

[3]  Min-Yi Shih,et al.  Strong broadband optical absorption in silicon nanowire films , 2007 .

[4]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[5]  Gang Chen,et al.  Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. , 2007, Nano letters.

[6]  Nathan S. Lewis,et al.  Growth of vertically aligned Si wire arrays over large areas (>1 cm^2) with Au and Cu catalysts , 2007 .

[7]  Yunjie Yan,et al.  Aligned single-crystalline Si nanowire arrays for photovoltaic applications. , 2005, Small.

[8]  P. Altermatt,et al.  Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al2O3 , 2007 .

[9]  N. Lewis,et al.  Radial pn junction nanorod solar cells: device physics principles and routes to fabrication in silicon , 2005, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005..

[10]  A. Cuevas,et al.  General parameterization of Auger recombination in crystalline silicon , 2002 .

[11]  Hui Fang,et al.  Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications , 2008, Nanotechnology.

[12]  J. Rand,et al.  Silicon Nanowire Solar Cells , 2007 .

[13]  Peng Wang,et al.  High-resolution detection of Au catalyst atoms in Si nanowires. , 2008, Nature nanotechnology.

[14]  Antonio Luque,et al.  Novel semiconductor solar cell structures : The quantum dot intermediate band solar cell , 2006 .

[15]  Peidong Yang,et al.  Silicon nanowire radial p-n junction solar cells. , 2008, Journal of the American Chemical Society.

[16]  Nathan S. Lewis,et al.  Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells , 2005 .

[17]  Eray S. Aydil,et al.  Nanowire-based dye-sensitized solar cells , 2005 .

[18]  S. Senz,et al.  Epitaxial growth of silicon nanowires using an aluminium catalyst , 2006, Nature nanotechnology.

[19]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[20]  Kok-Keong Lew,et al.  Silicon nanowire array photelectrochemical cells. , 2007, Journal of the American Chemical Society.

[21]  F. Falk,et al.  Silicon nanowire-based solar cells , 2008, Nanotechnology.

[22]  W. Read,et al.  Statistics of the Recombinations of Holes and Electrons , 1952 .

[23]  W. M. Bullis,et al.  Properties of gold in silicon , 1966 .

[24]  Nathan S Lewis,et al.  High aspect ratio silicon wire array photoelectrochemical cells. , 2007, Journal of the American Chemical Society.

[25]  Elizabeth C. Dickey,et al.  Structural and electrical properties of trimethylboron-doped silicon nanowires , 2004 .

[26]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[27]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.