Microstructure and mechanical properties of the spark plasma sintered TaC/SiC composites

[1]  Yu Zhou,et al.  New route to densify tantalum carbide at 1400 °C by spark plasma sintering , 2011 .

[2]  G. Hilmas,et al.  Mechanical properties of sintered ZrB2–SiC ceramics , 2011 .

[3]  Yu Zhou,et al.  Densification process of TaC/TaB2 composite in spark plasma sintering ☆ , 2011 .

[4]  D. Sciti,et al.  Microstructure and properties of HfC and TaC-based ceramics obtained by ultrafine powder , 2011 .

[5]  K. Vanmeensel,et al.  Microstructure and mechanical properties of pulsed electric current sintered B4C-TiB2 composites , 2011 .

[6]  S. R. Bakshi,et al.  Spark plasma sintered tantalum carbide: Effect of pressure and nano-boron carbide addition on microstructure and mechanical properties , 2011 .

[7]  D. Sciti,et al.  Spark plasma sintering of HfB2 with low additions of silicides of molybdenum and tantalum , 2010 .

[8]  J. Vleugels,et al.  ZrB2―SiC composites prepared by reactive pulsed electric current sintering , 2010 .

[9]  E. Olevsky,et al.  Spark plasma sintering of tantalum carbide , 2010 .

[10]  Guo‐Jun Zhang,et al.  Pressureless Sintering of Tantalum Carbide Ceramics without Additives , 2010 .

[11]  Jiecai Han,et al.  Effect of Various Additives on the Oxidation Behavior of ZrB2‐Based Ultra‐High‐Temperature Ceramics at 1800°C , 2010 .

[12]  V. Jayaram,et al.  Fabrication and mechanisms of densification of ZrB2-based ultra high temperature ceramics by reactive hot pressing , 2010 .

[13]  D. Shetty,et al.  Phase Constitution and Mechanical Properties of Carbides in the Ta–C System , 2009 .

[14]  D. Sciti,et al.  Processing, mechanical properties and oxidation behavior of TaC and HfC composites containing 15 vol% TaSi_2 or MoSi_2 , 2009 .

[15]  T. Grande,et al.  The Effect of Surface Oxides During Hot Pressing of TiB2 , 2009 .

[16]  G. Hilmas,et al.  Densification and mechanical properties of TaC-based ceramics , 2009 .

[17]  Jiecai Han,et al.  Microstructure and properties of silicon carbide whisker reinforced zirconium diboride ultra-high temperature ceramics , 2009 .

[18]  G. Hilmas,et al.  Densification, Mechanical Properties, and Oxidation Resistance of TaC–TaB2 Ceramics , 2008 .

[19]  J. Zaykoski,et al.  High‐Temperature Chemistry and Oxidation of ZrB2 Ceramics Containing SiC, Si3N4, Ta5Si3, and TaSi2 , 2008 .

[20]  D. Sciti,et al.  Spark plasma sintering and hot pressing of ZrB2–MoSi2 ultra-high-temperature ceramics , 2008 .

[21]  William G. Fahrenholtz,et al.  Pressureless Sintering of Zirconium Diboride Using Boron Carbide and Carbon Additions , 2007 .

[22]  N. Padture,et al.  Improved processing and oxidation-resistance of ZrB2 ultra-high temperature ceramics containing SiC nanodispersoids , 2007 .

[23]  D. Sciti,et al.  Effects of MoSi2 additions on the properties of Hf-and Zr-B2 composites produced by pressureless sintering , 2007 .

[24]  G. Hilmas,et al.  Hot pressing of tantalum carbide with and without sintering additives , 2007 .

[25]  F. Monteverde Ultra-high temperature HfB2–SiC ceramics consolidated by hot-pressing and spark plasma sintering , 2007 .

[26]  G. Hilmas,et al.  Influence of silicon carbide particle size on the microstructure and mechanical properties of zirconium diboride–silicon carbide ceramics , 2007 .

[27]  Lai-fei Cheng,et al.  Synthesis and microstructure of tantalum carbide and carbon composite by liquid precursor route , 2006 .

[28]  Z. A. Munir,et al.  The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method , 2006 .

[29]  K. Vanmeensel,et al.  Modelling of the temperature distribution during field assisted sintering , 2005 .

[30]  Donald T. Ellerby,et al.  High‐Strength Zirconium Diboride‐Based Ceramics , 2004 .

[31]  A. Mocellin,et al.  Sintering behaviour of ultrafine NbC and TaC powders , 1974 .