An approach to modeling asymmetric multivariate spatial covariance structures

We propose a framework in light of the delay effect to model the asymmetry of multivariate covariance functions that is often exhibited in real data. This general approach can endow any valid symmetric multivariate covariance function with the ability of modeling asymmetry and is very easy to implement. Our simulations and real data examples show that asymmetric multivariate covariance functions based on our approach can achieve remarkable improvements in prediction over symmetric models.

[1]  C. F. Sirmans,et al.  Nonstationary multivariate process modeling through spatially varying coregionalization , 2004 .

[2]  David R. Cox,et al.  A simple spatial-temporal model of rainfall , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  J. Andrew Royle,et al.  A hierarchical approach to multivariate spatial modeling and prediction , 1999 .

[4]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[5]  Tatiyana V. Apanasovich,et al.  Cross-covariance functions for multivariate random fields based on latent dimensions , 2010 .

[6]  Noel A Cressie,et al.  Multivariable spatial prediction , 1993 .

[7]  S. Cohn,et al.  Ooce Note Series on Global Modeling and Data Assimilation Construction of Correlation Functions in Two and Three Dimensions and Convolution Covariance Functions , 2022 .

[8]  A. Gelfand,et al.  A Bayesian coregionalization approach for multivariate pollutant data , 2003 .

[9]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[10]  K. Casey,et al.  Sea surface temperature and sea surface height variability in the North Pacific Ocean from 1993 to 1999 , 2002 .

[11]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[12]  Noel A Cressie,et al.  A spatial model for multivariate lattice data , 2007 .

[13]  J. Vargas-Guzmán,et al.  Coregionalization by Linear Combination of Nonorthogonal Components , 2002 .

[14]  Bo Li,et al.  Testing the covariance structure of multivariate random fields , 2008 .

[15]  Ronald P. Barry,et al.  Constructing and fitting models for cokriging and multivariable spatial prediction , 1998 .

[16]  T. Gneiting,et al.  Matérn Cross-Covariance Functions for Multivariate Random Fields , 2010 .

[17]  A. Gelfand,et al.  Prediction, interpolation and regression for spatially misaligned data , 2002 .

[18]  A. Raftery,et al.  Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .

[19]  Hans Wackernagel,et al.  Multivariate Geostatistics: An Introduction with Applications , 1996 .

[20]  Kevin L. Brown,et al.  Source and transport of trace metals in the Hatea River catchment and estuary, Whangarei, New Zealand , 2000 .

[21]  Alan E. Gelfand,et al.  Multivariate Spatial Modeling for Geostatistical Data Using Convolved Covariance Functions , 2007 .

[22]  N. Cressie,et al.  A dimension-reduced approach to space-time Kalman filtering , 1999 .

[23]  P. Guttorp,et al.  Geostatistical Space-Time Models, Stationarity, Separability, and Full Symmetry , 2007 .

[24]  Michael L. Stein,et al.  Statistical methods for regular monitoring data , 2005 .

[25]  Hao Zhang,et al.  Maximum‐likelihood estimation for multivariate spatial linear coregionalization models , 2007 .