Heat Conduction in Novel Electronic Films

Heat conduction in novel electronic films influences the performance and reliability of micromachined transistors, lasers, sensors, and actuators. This article reviews experimental and theoretical research on heat conduction in single-crystal semiconducting and superconducting films and superlattices, polycrystalline diamond films, and highly disordered organic and oxide films. The thermal properties of these films can differ dramatically from those of bulk samples owing to the dependence of the material structure and purity on film processing conditions and to the scattering of heat carriers at material boundaries. Predictions and data show that phonon scattering and transmission at boundaries strongly influence the thermal conductivities of single-crystal films and superlattices, although more work is needed to resolve the importance of strain-induced lattice defects. For polycrystalline films, phonon scattering on grain boundaries and associated defects causes the thermal conductivity to be strongly anisotropic and nonhomogeneous. For highly disordered films, preliminary studies have illustrated the influences of impurities on the volumetric heat capacity and, for the case of organic films, molecular orientation on the conductivity anisotropy. More work on disordered films needs to resolve the interplay among atomic-scale disorder, porosity, partial crystallinity, and molecular orientation.

[1]  Wei,et al.  Ab initio calculation of thermodynamic properties of silicon. , 1994, Physical review. B, Condensed matter.

[2]  J. Bardeen,et al.  Theory of the Thermal Conductivity of Superconductors , 1959 .

[3]  J. Denton,et al.  Fully depleted dual-gated thin-film SOI P-MOSFETs fabricated in SOI islands with an isolated buried polysilicon backgate , 1996, IEEE Electron Device Letters.

[4]  Kenneth E. Goodson,et al.  Experimental investigation of thermal conduction normal to diamond‐silicon boundaries , 1995 .

[5]  A. Majumdar Microscale Heat Conduction in Dielectric Thin Films , 1993 .

[6]  J. Glass,et al.  Characterization of diamond thin films: Diamond phase identification, surface morphology, and defect structures , 1989 .

[7]  Jagannathan,et al.  Thermal conductivity of amorphous materials above the plateau. , 1989, Physical review. B, Condensed matter.

[8]  J. J. Alvarado-Gil,et al.  Photoacoustic thermal characterization of spark‐processed porous silicon , 1996 .

[9]  Thomas W. Kenny,et al.  Low-stiffness silicon cantilevers with integrated heaters and piezoresistive sensors for high-density AFM thermomechanical data storage , 1998 .

[10]  Kenneth E. Goodson,et al.  Thermal conduction in metallized silicon‐dioxide layers on silicon , 1994 .

[11]  John D. Dow,et al.  Thermal conductivity of superlattices , 1982 .

[12]  P. R. Pinnock,et al.  The mechanical properties of solid polymers , 1966 .

[13]  Wolf,et al.  Evidence for strong electron-phonon coupling in the thermal conductivity of YBa2Cu3O7- delta. , 1992, Physical review. B, Condensed matter.

[14]  Kenneth E. Goodson,et al.  Solid layer thermal-conductivity measurement techniques , 1994 .

[15]  H. Maris,et al.  Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K. , 1993, Physical review. B, Condensed matter.

[16]  Kenneth E. Goodson,et al.  Impact of nucleation density on thermal resistance near diamond-substrate boundaries , 1997 .

[17]  T. Borca-Tasciuc,et al.  Thermal Conductivity and Heat Transfer in Superlattices , 1997 .

[18]  Zettl,et al.  Thermal-conductivity anisotropy of single-crystal Bi2Sr2CaCu2O8. , 1991, Physical review. B, Condensed matter.

[19]  M. Roy,et al.  Longitudinal phonons and high-temperature heat conduction in germanium , 1993 .

[20]  Gang Chen,et al.  Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices , 1998 .

[21]  D. Gravesteijn,et al.  Longitudinal phonons in Si/Ge superlattices , 1989 .

[22]  C. Wort,et al.  Crystalline perfection of chemical vapor deposited diamond films , 1990 .

[23]  D. Cahill,et al.  Thermal conductivity of a-Si:H thin films. , 1994, Physical review. B, Condensed matter.

[24]  Reinhard Zachai,et al.  Thermal diffusivities of thin diamond films on silicon , 1993 .

[25]  Seungmin Lee,et al.  Heat transport in thin dielectric films , 1997 .

[26]  J. Ziman,et al.  In: Electrons and Phonons , 1961 .

[27]  Kenneth E. Goodson Thermal Conduction in Nonhomogeneous CVD Diamond Layers in Electronic Microstructures , 1996 .

[28]  H. Reiss,et al.  Thermal resistance and electrical insulation of thin low-temperature-deposited diamond films , 1997 .

[29]  D. Cahill Thermal conductivity measurement from 30 to 750 K: the 3ω method , 1990 .

[30]  H. Casimir Note on the conduction of heat in crystals , 1938 .

[31]  S. Yip,et al.  The importance of Grüneisen parameters in developing interatomic potentials , 1997 .

[32]  Rama Venkatasubramanian,et al.  Thermal conductivity of Si–Ge superlattices , 1997 .

[33]  Per Hyldgaard,et al.  Phonon superlattice transport , 1997 .

[34]  Werner Weber,et al.  Thermal conductivity measurements of thin silicon dioxide films in integrated circuits , 1996 .

[35]  S. Yoshizawa,et al.  Anisotropic Thermal Diffusivity and Conductivity of YBCO(123) and YBCO(211) Mixed Crystals. II , 1994 .

[36]  S. Yip,et al.  Atomistic modeling of finite-temperature properties of crystalline β-SiC: II. Thermal conductivity and effects of point defects , 1998 .

[37]  E. H. Sondheimer,et al.  The mean free path of electrons in metals , 1952 .

[38]  Volker Wittwer,et al.  Some thermal and optical properties of a new transparent silica xerogel material with low density , 1993 .

[39]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.

[40]  P. Richards Bolometers for infrared and millimeter waves , 1994 .

[41]  S. R. Wilson,et al.  Thin film silicon on insulator substrates and their application to integrated circuits , 1996 .

[42]  Tamura,et al.  Acoustic-phonon propagation in superlattices. , 1988, Physical review. B, Condensed matter.

[43]  E. Blank,et al.  Low temperature limits of diamond film growth by microwave plasma-assisted CVD , 1996 .

[44]  A. Gossard,et al.  Selective Transmission of High-Frequency Phonons by a Superlattice: The , 1979 .

[45]  L. Tewordt,et al.  Theory of thermal conductivity of the lattice for high-Tc superconductors , 1989 .

[46]  Kenneth E. Goodson,et al.  PHONON-BOUNDARY SCATTERING IN THIN SILICON LAYERS , 1997 .

[47]  E. Kaxiras,et al.  Environment-dependent interatomic potential for bulk silicon , 1997, cond-mat/9704137.

[48]  Alexander A. Balandin,et al.  Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well , 1998 .

[49]  S. Peacor,et al.  YBa2Cu3O7−δ films: Calculation of the thermal conductivity and phonon mean‐free path , 1992 .

[50]  P. Sheng,et al.  Heat Conductivity of Amorphous Solids: Simulation Results on Model Structures , 1991, Science.

[51]  Watson,et al.  Lower limit to the thermal conductivity of disordered crystals. , 1992, Physical review. B, Condensed matter.

[52]  Gang Chen,et al.  Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures , 1997 .

[53]  C. Tien,et al.  Thermal conductivities of quantum well structures , 1993 .

[54]  S.S. Wong,et al.  Spatial temperature profiles due to nonuniform self-heating in LDMOS's in thin SOI , 1997, IEEE Electron Device Letters.

[55]  Kenneth E. Goodson,et al.  Thermal characterization of anisotropic thin dielectric films using harmonic Joule heating , 1999 .

[56]  C. Uher,et al.  Transmission of phonons through grain boundaries in diamond films , 1993 .

[57]  G. Ruocco,et al.  Low-frequency atomic motion in a model glass , 1996 .

[58]  Wang,et al.  Anisotropy of the thermal conductivity of YBa2Cu3O7-y. , 1989, Physical review. B, Condensed matter.

[59]  M. Bruel,et al.  Smart-Cut: A New Silicon On Insulator Material Technology Based on Hydrogen Implantation and Wafer Bonding*1 , 1997 .

[60]  C. Uher Thermal conductivity of high-Tc superconductors , 1990 .

[61]  K. Goodson,et al.  Applications of micron-scale passive diamond layers for the integrated circuits and microelectromechanical systems industries☆ , 1998 .

[62]  C. L. Tien,et al.  Challenges in Microscale Conductive and Radiative Heat Transfer , 1994 .

[63]  M. G. Holland Analysis of Lattice Thermal Conductivity , 1963 .

[64]  Karsten Plamann,et al.  Thermal measurements on diamond and related materials , 1995 .

[65]  A. Maznev,et al.  Transient thermal gratings at surfaces for thermal characterization of bulk materials and thin films , 1995 .

[66]  L. T. Su,et al.  Annealing-temperature dependence of the thermal conductivity of LPCVD silicon-dioxide layers , 1993, IEEE Electron Device Letters.

[67]  Glass,et al.  Characterization of bias-enhanced nucleation of diamond on silicon by invacuo surface analysis and transmission electron microscopy. , 1992, Physical review. B, Condensed matter.

[68]  K. H. Ploog,et al.  Thermal conductivity of GaAs/AlAs superlattices , 1999 .

[69]  Meng-Hsueh Chiang,et al.  Design issues and insights for low-voltage high-density SOI DRAM , 1998 .

[70]  L. T. Su,et al.  Prediction and Measurement of the Thermal Conductivity of Amorphous Dielectric Layers , 1994 .

[71]  S.S. Wong,et al.  Short-timescale thermal mapping of semiconductor devices , 1997, IEEE Electron Device Letters.

[72]  R. Prasher,et al.  Review of Thermal Boundary Resistance of High-Temperature Superconductors , 1997 .

[73]  Roger Fabian W. Pease,et al.  Self‐limiting oxidation for fabricating sub‐5 nm silicon nanowires , 1994 .

[74]  A. Smith,et al.  THIN-FILM THERMAL CONDUCTIVITY AND THICKNESS MEASUREMENTS USING PICOSECOND ULTRASONICS , 1997 .

[75]  Hatta Hiroshi,et al.  Equivalent inclusion method for steady state heat conduction in composites , 1986 .

[76]  T. Klitsner,et al.  Thermal conductivity of thin films: Measurements and understanding , 1989 .

[77]  S. Wong,et al.  Temperature-Dependent Thermal Conductivity of Single-Crystal Silicon Layers in SOI Substrates , 1996, Microelectromechanical Systems (MEMS).

[78]  Reinhard Zachai,et al.  The nucleation and growth of large area, highly oriented diamond films on silicon substrates , 1998 .

[79]  Christopher J. Morath,et al.  Picosecond optical studies of amorphous diamond and diamondlike carbon: Thermal conductivity and longitudinal sound velocity , 1994 .

[80]  J. Callaway Model for Lattice Thermal Conductivity at Low Temperatures , 1959 .

[81]  S. Wolf,et al.  Lattice thermal conductivity of YBa2Cu3O7−δ , 1992 .

[82]  Klein,et al.  Folded acoustic and quantized optic phonons in (GaAl)As superlattices. , 1985, Physical review. B, Condensed matter.

[83]  Allen,et al.  Thermal conductivity and localization in glasses: Numerical study of a model of amorphous silicon. , 1993, Physical review. B, Condensed matter.

[84]  B. Khuri-Yakub,et al.  Photothermal measurements of high Tc superconductors , 1989 .

[85]  E. Blank,et al.  Microstructure evolution and non-diamond carbon incorporation in CVD diamond thin films grown at low substrate temperatures , 1997 .

[86]  D. Cahill,et al.  Thermal conductivity of sputtered and evaporated SiO2 and TiO2 optical coatings , 1994 .

[87]  Naoyuki Nagasima,et al.  Structure analysis of silicon dioxide films formed by oxidation of silane , 1972 .

[88]  Siegfried Bauer,et al.  Pulsed electrothermal technique for measuring the thermal diffusivity of dielectric films on conducting substrates , 1996 .

[89]  R. Pohl,et al.  Thermal boundary resistance , 1989 .

[90]  Kenneth E. Goodson,et al.  Electron and Phonon Thermal Conduction in Epitaxial High-Tc Superconducting Films , 1993 .