Recursive least squares identification methods for multivariate pseudo-linear systems using the data filtering

This paper concerns the parameter identification methods of multivariate pseudo-linear autoregressive systems. A multivariate recursive generalized least squares algorithm is presented as a comparison. By using the data filtering technique, a multivariate pseudo-linear autoregressive system is transformed into a filtered system model and a filtered noise model, and a filtering based multivariate recursive generalized least squares algorithm is developed for estimating the parameters of these two models. The proposed algorithm achieves a higher computational efficiency than the multivariate recursive generalized least squares algorithm, and the simulation results prove that the proposed method is effective.

[1]  F. Ding,et al.  Gradient-based iterative identification methods for multivariate pseudo-linear moving average systems using the data filtering , 2016 .

[2]  Ling Xu,et al.  Application of the Newton iteration algorithm to the parameter estimation for dynamical systems , 2015, J. Comput. Appl. Math..

[3]  Masoud Shafiee,et al.  A new Levinson–Durbin based 2-D AR model parameter estimation method , 2016, Multidimens. Syst. Signal Process..

[4]  F. Ding,et al.  Recasted models-based hierarchical extended stochastic gradient method for MIMO nonlinear systems , 2017 .

[5]  Ling Xu,et al.  A proportional differential control method for a time-delay system using the Taylor expansion approximation , 2014, Appl. Math. Comput..

[6]  Qingxia Li,et al.  Array Factor Forming for Image Reconstruction of One-Dimensional Nonuniform Aperture Synthesis Radiometers , 2016, IEEE Geoscience and Remote Sensing Letters.

[7]  Huiping Li,et al.  On Neighbor Information Utilization in Distributed Receding Horizon Control for Consensus-Seeking , 2016, IEEE Transactions on Cybernetics.

[8]  Jian Pan,et al.  Image noise smoothing using a modified Kalman filter , 2016, Neurocomputing.

[9]  Feng Ding,et al.  Novel data filtering based parameter identification for multiple-input multiple-output systems using the auxiliary model , 2016, Autom..

[10]  Feng Ding,et al.  Decomposition based least squares iterative identification algorithm for multivariate pseudo-linear ARMA systems using the data filtering , 2017, J. Frankl. Inst..

[11]  Ruifeng Ding,et al.  Data Filtering Based Stochastic Gradient Algorithms for Multivariable CARAR-Like Systems , 2013 .

[12]  Maria V. Kulikova,et al.  Constructing numerically stable Kalman filter-based algorithms for gradient-based adaptive filtering , 2013 .

[13]  Yaakov Oshman,et al.  LMMSE Filtering in Feedback Systems With White Random Modes: Application to Tracking in Clutter , 2012, IEEE Transactions on Automatic Control.

[14]  Feng Ding,et al.  The auxiliary model based hierarchical gradient algorithms and convergence analysis using the filtering technique , 2016, Signal Process..

[15]  Yide Wang,et al.  Fault diagnosis method based on FFT-RPCA-SVM for Cascaded-Multilevel Inverter. , 2016, ISA transactions.

[16]  Feng Ding,et al.  Recursive Least Squares and Multi-innovation Stochastic Gradient Parameter Estimation Methods for Signal Modeling , 2017, Circuits Syst. Signal Process..

[17]  T. Hayat,et al.  Parameter estimation for pseudo-linear systems using the auxiliary model and the decomposition technique , 2017 .

[18]  Wan Xiangkui,et al.  A T-wave alternans assessment method based on least squares curve fitting technique , 2016 .

[19]  Alimorad Mahmoudi,et al.  Two dimensional autoregressive estimation from noisy observations as a quadratic eigenvalue problem , 2016, Multidimens. Syst. Signal Process..

[20]  Feng Ding,et al.  Parameter estimation algorithms for multivariable Hammerstein CARMA systems , 2016, Inf. Sci..

[21]  Feng Ding,et al.  New gradient based identification methods for multivariate pseudo-linear systems using the multi-innovation and the data filtering , 2017, J. Frankl. Inst..

[22]  Rames C. Panda,et al.  Parameter estimation of linear MIMO systems using sequential relay feedback test , 2014 .

[23]  D. Wang Brief paper: Lleast squares-based recursive and iterative estimation for output error moving average systems using data filtering , 2011 .

[24]  Jie Yan,et al.  Image denoising by generalized total variation regularization and least squares fidelity , 2015, Multidimens. Syst. Signal Process..

[25]  Feng Ding,et al.  Data Filtering-Based Multi-innovation Stochastic Gradient Algorithm for Nonlinear Output Error Autoregressive Systems , 2016, Circuits Syst. Signal Process..

[26]  Xiaofei Zhang,et al.  Sparse representation-based joint angle and Doppler frequency estimation for MIMO radar , 2015, Multidimens. Syst. Signal Process..

[27]  Ling Xu,et al.  Parameter estimation and controller design for dynamic systems from the step responses based on the Newton iteration , 2015 .

[28]  F. Ding,et al.  Filtering-based iterative identification for multivariable systems , 2016 .

[29]  Feng Ding,et al.  Joint Estimation of States and Parameters for an Input Nonlinear State-Space System with Colored Noise Using the Filtering Technique , 2016, Circuits Syst. Signal Process..

[30]  Wei Xing Zheng,et al.  Parameter estimation algorithms for Hammerstein output error systems using Levenberg-Marquardt optimization method with varying interval measurements , 2017, J. Frankl. Inst..

[31]  Wei Zhang,et al.  Improved least squares identification algorithm for multivariable Hammerstein systems , 2015, J. Frankl. Inst..

[32]  Dongqing Wang,et al.  Hierarchical parameter estimation for a class of MIMO Hammerstein systems based on the reframed models , 2016, Appl. Math. Lett..

[33]  Abdelaziz Hmamed,et al.  Robust $$H_{\infty }$$H∞ filtering for uncertain two-dimensional continuous systems with time-varying delays , 2013, Multidimens. Syst. Signal Process..

[34]  Huiping Li,et al.  Distributed receding horizon control of constrained nonlinear vehicle formations with guaranteed γ-gain stability , 2016, Autom..

[35]  Tao Tang,et al.  Several gradient-based iterative estimation algorithms for a class of nonlinear systems using the filtering technique , 2014 .

[36]  Huiping Li,et al.  Continuous-time model predictive control of under-actuated spacecraft with bounded control torques , 2017, Autom..