Modelling and FEA-simulation of the anisotropic damping of thermoplastic composites

Stiff and light fibre reinforced composites as used in air- and space-craft applications tend to high sound emission. Therefore, the damping properties are essential for the entire structural and acoustic engineering. Viscous damping is an established and reasonably linear model of the dissipation behaviour. Commonly, it is assumed to be isotropic and constant over all modes. For anisotropic materials it depends on the fibre orientation as well as the elastic and thermal material properties. To portray the orthogonal anisotropic behaviour, a model for unidirectional fibre reinforced plastics (frp) has been developed based on the classical laminate theory by ADAMS and BACON starting in 1973. Their approach includes three damping coefficients - for longitudinal damping in fibre direction, damping transversal to the fibres and shear based dissipation. The damping of a laminate is then accumulated layer wise including the anisotropic stiffness. So far, the model has been applied mainly to thermoset matrix materials. In this study, an experimental parameter estimation for different thermoplastic frp with angle ply and cross ply layups was carried out by measuring free vibrations of cantilever beams. The results show potential and limits of the ADAMS/BACON damping criterion. In addition, a possibility of modelling the anisotropic damping is shown. The implementation in standard FEA software is used to study the influence of boundary conditions on the damping properties and numerically estimate the radiated sound power of thin-walled frp parts.

[1]  Robert D. Adams,et al.  Vibration damping in sandwich panels , 2008 .

[2]  H. Rothert,et al.  Damping characterization of unidirectional fibre reinforced polymer composites , 1995 .

[3]  A. Hazrati Niyari,et al.  Nonlinear finite element modelling investigation of flexural damping behaviour of triple core composite sandwich panels , 2013 .

[4]  Francesco Franco,et al.  Damping evaluation on eco-friendly sandwich panels through reverberation time (RT60) measurements , 2015 .

[5]  Robert D. Adams,et al.  Effect of Fibre Orientation and Laminate Geometry on the Dynamic Properties of CFRP , 1973 .

[6]  R. Adams,et al.  The Damping and Dynamic Moduli of Symmetric Laminated Composite Beams—Theoretical and Experimental Results , 1984 .

[7]  Jonghwan Suhr,et al.  Sound and vibration damping characteristics in natural material based sandwich composites , 2013 .

[8]  C. Bisagni,et al.  A procedure for the evaluation of damping effects in composite laminated structures , 2015 .

[9]  M. Cavalli,et al.  2D damping predictions of fiber composite plates: Layup effects , 2008 .

[10]  Robert D. Adams,et al.  Damping in advanced polymer–matrix composites , 2003 .

[11]  J. Berthelot,et al.  Damping analysis of orthotropic composite materials and laminates , 2008 .

[12]  R. Adams,et al.  The effect of temperature on the dynamic characteristics of heat-resistant thermoplastic composites , 1996 .

[13]  Martin Dannemann,et al.  Analytical study of the structural-dynamics and sound radiation of anisotropic multilayered fibre-reinforced composites , 2015 .

[14]  Robert D. Adams,et al.  DYNAMIC FLEXURAL PROPERTIES OF ANISOTROPIC FIBROUS COMPOSITE BEAMS , 1994 .

[15]  R. Adams,et al.  The dynamic properties of fibre-reinforced polymers exposed to hot, wet conditions , 1996 .

[16]  Toshihiko Asami,et al.  Damping properties of thermoplastic-elastomer interleaved carbon fiber-reinforced epoxy composites , 2004 .

[17]  Steffen Marburg,et al.  Estimation of Radiated Sound Power: A Case Study on Common Approximation Methods , 2009 .

[18]  Robert D. Adams,et al.  Modal vibration damping of anisotropic FRP laminates using the Rayleigh-Ritz energy minimization scheme , 2003 .

[19]  Yoshihiro Narita,et al.  Analysis and optimal design for the damping property of laminated viscoelastic plates under general edge conditions , 2013 .

[20]  Yoshihiro Narita,et al.  The effect of aspect ratios and edge conditions on the optimal damping design of thin soft core sandwich plates and beams , 2014 .

[21]  R. Velmurugan,et al.  The effect of the strand diameter on the damping characteristics of fiber reinforced polymer matrix composites: Theoretical and experimental study , 2014 .

[22]  Robert D. Adams,et al.  Finite-element prediction of modal response of damped layered composite panels , 1995 .

[23]  Kshitij Gupta,et al.  Damping studies in fiber-reinforced composites : a review , 1999 .

[24]  R. Adams,et al.  Prediction and Measurement of the Vibrational Damping Parameters of Carbon and Glass Fibre-Reinforced Plastics Plates , 1984 .

[25]  M. R. Maheri,et al.  The effect of layup and boundary conditions on the modal damping of FRP composite panels , 2011 .

[26]  B. Jang,et al.  A study on material damping of 0° laminated composite sandwich cantilever beams with a viscoelastic layer , 2003 .

[27]  H. Dresig,et al.  Dynamics of Machinery: Theory and Applications , 2010 .

[28]  J. Berthelot,et al.  Damping analysis of laminated beams and plates using the Ritz method , 2006 .

[29]  Domenico Mundo,et al.  Damping in composite materials: Properties and models , 2015 .