Functional MRI in human subjects with gradient‐echo and spin‐echo EPI at 9.4 T

The increased signal‐to‐noise ratio and blood oxygen level dependent signal at ultra‐high field can only help to boost the resolution in functional MRI studies if the spatial specificity of the activation signal is improved. At a field strength of 9.4 T, both gradient‐echo and spin‐echo based echo‐planar imaging were implemented and applied to investigate the specificity of human functional MRI. A finger tapping paradigm was used to acquire functional MRI data with scan parameters similar to standard neuroscientific applications.

[1]  Nikos K Logothetis,et al.  Laminar specificity in monkey V1 using high-resolution SE-fMRI. , 2006, Magnetic resonance imaging.

[2]  R. Kauppinen,et al.  Venous blood effects in spin‐echo fMRI of human brain , 1999, Magnetic resonance in medicine.

[3]  Daniel Pflugfelder,et al.  On the numerically predicted spatial BOLD fMRI specificity for spin echo sequences. , 2011, Magnetic resonance imaging.

[4]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[5]  J. R. Baker,et al.  The intravascular contribution to fmri signal change: monte carlo modeling and diffusion‐weighted studies in vivo , 1995, Magnetic resonance in medicine.

[6]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[7]  Wietske van der Zwaag,et al.  High resolution SE-fMRI in humans at 3 and 7 T using a motor task , 2007, Magnetic Resonance Materials in Physics, Biology and Medicine.

[8]  Rolf Pohmann,et al.  Human imaging at 9.4 T using T2*‐, phase‐, and susceptibility‐weighted contrast , 2011, Magnetic resonance in medicine.

[9]  K. Uğurbil,et al.  Experimental determination of the BOLD field strength dependence in vessels and tissue , 1997, Magnetic resonance in medicine.

[10]  K. Uğurbil,et al.  Microvascular BOLD contribution at 4 and 7 T in the human brain: Gradient‐echo and spin‐echo fMRI with suppression of blood effects , 2003, Magnetic resonance in medicine.

[11]  R. Pohmann,et al.  A 15-channel receive array and 16 channel detunable transmit coil for human brain imaging at 9.4 T , 2011 .

[12]  Mathias Hoehn,et al.  No Increase of the Blood Oxygenation Level-Dependent Functional Magnetic Resonance Imaging Signal with Higher Field Strength: Implications for Brain Activation Studies , 2010, The Journal of Neuroscience.

[13]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[14]  Timothy Q. Duong,et al.  Blood longitudinal (T1) and transverse (T2) relaxation time constants at 11.7 Tesla , 2011, Magnetic Resonance Materials in Physics, Biology and Medicine.

[15]  Ravi S. Menon,et al.  Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. , 1993, Biophysical journal.

[16]  Peter R Luijten,et al.  Blood oxygenation level‐dependent (BOLD) total and extravascular signal changes and ΔR2* in human visual cortex at 1.5, 3.0 and 7.0 T , 2011, NMR in biomedicine.

[17]  D. Norris Principles of magnetic resonance assessment of brain function , 2006, Journal of magnetic resonance imaging : JMRI.

[18]  K. Uğurbil,et al.  Spin‐echo fMRI in humans using high spatial resolutions and high magnetic fields , 2003, Magnetic resonance in medicine.

[19]  Essa Yacoub,et al.  Signal and noise characteristics of Hahn SE and GE BOLD fMRI at 7 T in humans , 2005, NeuroImage.

[20]  J. Reichenbach,et al.  Quantitative differentiation between BOLD models in fMRI , 2001, Magnetic resonance in medicine.

[21]  Stephen M. Smith,et al.  Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference , 2009, NeuroImage.

[22]  Peter A. Bandettini,et al.  Physiological noise effects on the flip angle selection in BOLD fMRI , 2011, NeuroImage.

[23]  K. Uğurbil,et al.  Diffusion‐weighted spin‐echo fMRI at 9.4 T: Microvascular/tissue contribution to BOLD signal changes , 1999, Magnetic resonance in medicine.

[24]  David G. Norris,et al.  Spin-echo fMRI: The poor relation? , 2012, NeuroImage.

[25]  P. Stroman,et al.  Spin-echo versus gradient-echo fMRI with short echo times. , 2001, Magnetic resonance imaging.

[26]  S. Francis,et al.  Spatial location and strength of BOLD activation in high‐spatial‐resolution fMRI of the motor cortex: a comparison of spin echo and gradient echo fMRI at 7 T , 2012, NMR in biomedicine.

[27]  H. Duvernoy,et al.  Cortical blood vessels of the human brain , 1981, Brain Research Bulletin.

[28]  Xin Yu,et al.  Direct imaging of macrovascular and microvascular contributions to BOLD fMRI in layers IV–V of the rat whisker–barrel cortex , 2012, NeuroImage.

[29]  Tao Jin,et al.  Source of nonlinearity in echo‐time‐dependent BOLD fMRI , 2006, Magnetic resonance in medicine.

[30]  R. Goebel,et al.  7T vs. 4T: RF power, homogeneity, and signal‐to‐noise comparison in head images , 2001, Magnetic resonance in medicine.

[31]  Kamil Ugurbil,et al.  An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging , 2009, NeuroImage.

[32]  Jia-Hong Gao,et al.  Inflow effects on functional MRI , 2012, NeuroImage.

[33]  M Zaitsev,et al.  Point spread function mapping with parallel imaging techniques and high acceleration factors: Fast, robust, and flexible method for echo‐planar imaging distortion correction , 2004, Magnetic resonance in medicine.