A Nitsche-type Method for Helmholtz Equation with an Embedded Acoustically Permeable Interface

We propose a new finite element method for Helmholtz equation in the situation where an acoustically permeable interface is embedded in the computational domain. A variant of Nitsche's method, different from the standard one, weakly enforces the impedance conditions for transmission through the interface. As opposed to a standard finite-element discretization of the problem, our method seamlessly handles a complex-valued impedance function $Z$ that is allowed to vanish. In the case of a vanishing impedance, the proposed method reduces to the classic Nitsche method to weakly enforce continuity over the interface. We show stability of the method, in terms of a discrete G{\aa}rding inequality, for a quite general class of surface impedance functions, provided that possible surface waves are sufficiently resolved by the mesh. Moreover, we prove an a priori error estimate under the assumption that the absolute value of the impedance is bounded away from zero almost everywhere. Numerical experiments illustrate the performance of the method for a number of test cases in 2D and 3D with different interface conditions.

[1]  P. Hansbo,et al.  A finite element method for domain decomposition with non-matching grids , 2003 .

[2]  A. Quarteroni,et al.  On the coupling of 1D and 3D diffusion-reaction equations. Applications to tissue perfusion problems , 2008 .

[3]  I. Babuska The Finite Element Method with Penalty , 1973 .

[4]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[5]  Rolf Stenberg,et al.  Nitsche's method for general boundary conditions , 2009, Math. Comput..

[6]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[7]  Carlo D'Angelo,et al.  Finite Element Approximation of Elliptic Problems with Dirac Measure Terms in Weighted Spaces: Applications to One- and Three-dimensional Coupled Problems , 2012, SIAM J. Numer. Anal..

[8]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[9]  L. Heltai,et al.  Variational implementation of immersed finite element methods , 2011, 1110.2063.

[10]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[11]  Thomas Richter,et al.  A Locally Modified Parametric Finite Element Method for Interface Problems , 2014, SIAM J. Numer. Anal..

[12]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[13]  Ray Kirby,et al.  The impedance of perforated plates subjected to grazing gas flow and backed by porous media , 1998 .

[14]  Peter Hansbo,et al.  CutFEM: Discretizing geometry and partial differential equations , 2015 .

[15]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[16]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[17]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[18]  A. Hirschberg,et al.  An introduction to acoustics , 1992 .

[19]  L. Heltai,et al.  A finite element approach to the immersed boundary method , 2003 .

[20]  Rolf Stenberg,et al.  On some techniques for approximating boundary conditions in the finite element method , 1995 .

[21]  Juhani Pitkäranta,et al.  Boundary subspaces for the finite element method with Lagrange multipliers , 1979 .

[22]  Rolf Stenberg,et al.  MORTARING BY A METHOD OF J.A. NITSCHE , 1998 .

[23]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[24]  D. Griffel,et al.  Initial Boundary Value Problems in Mathematical Physics , 1986 .

[25]  Faker Ben Belgacem,et al.  The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.

[26]  Anne-Sophie Bonnet-Ben Dhia,et al.  SIMULATION OF MUFFLER'S TRANSMISSION LOSSES BY A HOMOGENIZED FINITE ELEMENT METHOD , 2004 .

[27]  J. Hesthaven,et al.  On the constants in hp-finite element trace inverse inequalities , 2003 .

[28]  A. H. Schatz,et al.  An observation concerning Ritz-Galerkin methods with indefinite bilinear forms , 1974 .

[29]  P. Hansbo,et al.  A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .

[30]  M. Lai,et al.  An Immersed Boundary Method with Formal Second-Order Accuracy and Reduced Numerical Viscosity , 2000 .