Generalized and inverse generalized synchronization of fractional-order discrete-time chaotic systems with non-identical dimensions

[1]  George A. Anastassiou,et al.  Principles of delta fractional calculus on time scales and inequalities , 2010, Math. Comput. Model..

[2]  K. Stefanski Modelling chaos and hyperchaos with 3-D maps , 1998 .

[3]  D. Baleanu,et al.  Stability analysis of impulsive fractional difference equations , 2018 .

[4]  Yong Liu,et al.  Discrete Chaos in Fractional H enon Maps , 2014 .

[5]  Adel Ouannas,et al.  Generalized synchronization of different dimensional chaotic dynamical systems in discrete time , 2015 .

[6]  Zhongjun Ma,et al.  Generalized synchronization of different dimensional chaotic dynamical systems , 2007 .

[7]  Li Liu,et al.  Chaos Synchronization of Nonlinear Fractional Discrete Dynamical Systems via Linear Control , 2017, Entropy.

[8]  Dumitru Baleanu,et al.  Chaos synchronization of the discrete fractional logistic map , 2014, Signal Process..

[9]  A. Peterson,et al.  Discrete Fractional Calculus , 2016 .

[10]  T. Hu Discrete Chaos in Fractional Henon Map , 2014 .

[11]  Dumitru Baleanu,et al.  An Efficient Non-standard Finite Difference Scheme for a Class of Fractional Chaotic Systems , 2018 .

[12]  Yong Liu,et al.  Chaotic synchronization between linearly coupled discrete fractional Hénon maps , 2016 .

[13]  Lamberto Rondoni,et al.  Applications of Chaos and Nonlinear Dynamics in Science and Engineering - Vol. 2 , 2014 .

[14]  Adel Ouannas,et al.  On Inverse Generalized Synchronization of Continuous Chaotic Dynamical Systems , 2016 .

[15]  Adel Ouannas,et al.  New type of chaos synchronization in discrete-time systems: the F-M synchronization , 2018 .

[16]  David M. Curry Practical application of chaos theory to systems engineering , 2012, CSER.

[17]  Dumitru Baleanu,et al.  Novel Mittag-Leffler stability of linear fractional delay difference equations with impulse , 2018, Appl. Math. Lett..

[18]  D. Hitzl,et al.  An exploration of the Hénon quadratic map , 1985 .

[19]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[20]  Maamar Bettayeb,et al.  A new contribution for the impulsive synchronization of fractional-order discrete-time chaotic systems , 2017 .

[21]  Adel Ouannas,et al.  Inverse full state hybrid projective synchronization for chaotic maps with different dimensions , 2016 .

[22]  D. Baleanu,et al.  A NEW APPLICATION OF THE FRACTIONAL LOGISTIC MAP , 2016 .

[23]  D. Baleanu,et al.  New aspects of the adaptive synchronization and hyperchaos suppression of a financial model , 2017 .

[24]  M. Bettayeb,et al.  A novel secure image transmission scheme based on synchronization of fractional-order discrete-time hyperchaotic systems , 2017 .

[25]  张刚,et al.  Generalized synchronization of discrete systems , 2007 .

[26]  Thabet Abdeljawad,et al.  On Riemann and Caputo fractional differences , 2011, Comput. Math. Appl..

[27]  Dumitru Baleanu,et al.  A new approach for the nonlinear fractional optimal control problems with external persistent disturbances , 2018, J. Frankl. Inst..

[28]  Leon O. Chua,et al.  Conditions for impulsive Synchronization of Chaotic and hyperchaotic Systems , 2001, Int. J. Bifurc. Chaos.

[29]  Joakim Munkhammar,et al.  Chaos in a fractional order logistic map , 2013 .

[30]  T. Kapitaniak Chaos for Engineers: Theory, Applications, and Control , 2012 .

[31]  Adel Ouannas,et al.  A new approach to study the coexistence of some synchronization types between chaotic maps with different dimensions , 2016 .

[32]  Dumitru Baleanu,et al.  Lyapunov functions for Riemann-Liouville-like fractional difference equations , 2017, Appl. Math. Comput..

[33]  Ahmed Alsaedi,et al.  Universal chaos synchronization control laws for general quadratic discrete systems , 2017 .

[34]  Raghib Abu-Saris,et al.  On the asymptotic stability of linear system of fractional-order difference equations , 2013 .

[35]  Changpin Li,et al.  Chaotic vibration in fractional maps , 2014 .

[36]  D. Baleanu,et al.  Discrete fractional logistic map and its chaos , 2014 .

[37]  R. Lozi UN ATTRACTEUR ÉTRANGE (?) DU TYPE ATTRACTEUR DE HÉNON , 1978 .

[38]  John R. Terry,et al.  Chaotic communication using generalized synchronization , 2001 .

[39]  Gang Zhang,et al.  Generalized synchronization of discrete systems , 2007 .

[40]  G. Grassi,et al.  Generalized synchronization between different chaotic maps via dead-beat control , 2012 .

[41]  Dumitru Baleanu,et al.  Stability analysis of Caputo-like discrete fractional systems , 2017, Commun. Nonlinear Sci. Numer. Simul..

[42]  Kazuyuki Aihara,et al.  Chaos and its Applications , 2012 .

[43]  Dumitru Baleanu,et al.  Discrete chaos in fractional sine and standard maps , 2014 .

[44]  D. Baleanu,et al.  The Motion of a Bead Sliding on a Wire in Fractional Sense , 2017 .

[45]  Paul W. Eloe,et al.  DISCRETE FRACTIONAL CALCULUS WITH THE NABLA OPERATOR , 2009 .

[46]  D. Baleanu,et al.  Chaos synchronization of fractional chaotic maps based on the stability condition , 2016 .

[47]  B. Sharma,et al.  Investigation of chaos in fractional order generalized hyperchaotic Henon map , 2017 .

[48]  Adel Ouannas,et al.  A New Generalized-Type of Synchronization for Discrete-Time Chaotic Dynamical Systems , 2015 .

[49]  Ahmad Taher Azar,et al.  A new type of hybrid synchronization between arbitrary hyperchaotic maps , 2016, International Journal of Machine Learning and Cybernetics.

[50]  Dorota Mozyrska,et al.  The -Transform Method and Delta Type Fractional Difference Operators , 2015 .

[51]  J. Cermák,et al.  On explicit stability conditions for a linear fractional difference system , 2015 .

[52]  V. E. Tarasov,et al.  Fractional standard map , 2009, 0909.5412.