Demonstration of Optimal Fixed-Point Quantum Search Algorithm in IBM Quantum Computer

Quantum search algorithm can be described as the rotation of state vectors in a Hilbert space. The state vectors uniformly rotate by iterative sequences until they hit the target position. To optimize the algorithm, it is necessary to have the precise knowledge about some parameters like the number of target positions. Here we demonstrate the implementation of optimal fixed-point quantum search (OFPQS) algorithm in a five-qubit quantum computer developed by IBM Corporation. We perform the OFPQS algorithm for one and two-iterations and confirm the accuracy of our results by state tomography process.

[1]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[2]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[3]  C. H. Bennett,et al.  Quantum Information and Computation , 1995 .

[4]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[5]  N. Gershenfeld,et al.  Experimental Implementation of Fast Quantum Searching , 1998 .

[6]  Vijay Patel,et al.  Quantum superposition of distinct macroscopic states , 2000, Nature.

[7]  Domenico Grimaldi,et al.  Distributed measurement systems , 2001 .

[8]  Zijian Diao,et al.  A Quantum Circuit Design for Grover’s Algorithm , 2002 .

[9]  Andrew M. Childs Secure assisted quantum computation , 2001, Quantum Inf. Comput..

[10]  P. C. Haljan,et al.  Implementation of Grover's quantum search algorithm in a scalable system , 2005 .

[11]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[12]  Timothy Edward John Behrens,et al.  How to Perfect a Chocolate Soufflé and Other Important Problems , 2011, Neuron.

[13]  Theodore J. Yoder,et al.  Fixed-point quantum search with an optimal number of queries. , 2014, Physical review letters.

[14]  S. Wehner,et al.  Entropic uncertainty and measurement reversibility , 2015, 1511.00267.

[15]  Gaurav Bhole,et al.  Steering quantum dynamics via bang-bang control: Implementing optimal fixed-point quantum search algorithm , 2015, 1512.08385.

[16]  Enrique Solano,et al.  Artificial Life in Quantum Technologies , 2015, Scientific Reports.

[17]  J. Latorre,et al.  Experimental test of Mermin inequalities on a five-qubit quantum computer , 2016, 1605.04220.

[18]  Demonstration of Entropic Noncontextual Inequality Using IBM Quantum Computer , 2017 .

[19]  L. Lamata,et al.  Approximate Quantum Adders with Genetic Algorithms: An IBM Quantum Experience , 2016, 1611.07851.

[20]  Bikash K. Behera,et al.  Quantum Locker Using a Novel Verification Algorithm and Its Experimental Realization in IBM Quantum Computer , 2017, 1710.05196.

[21]  Maria Schuld,et al.  Implementing a distance-based classifier with a quantum interference circuit , 2017, 1703.10793.

[22]  Goutam Paul,et al.  Experimental test of Hardy's paradox on a five-qubit quantum computer , 2017 .

[23]  B. K. Behera,et al.  Experimental Demonstration of Quantum Repeater in IBM Quantum Computer , 2017 .

[24]  James R. Wootton Demonstrating non-Abelian braiding of surface code defects in a five qubit experiment , 2016, 1609.07774.

[25]  B. K. Behera,et al.  Experimental Demonstration of Quantum Tunneling in IBM Quantum Computer , 2017, 1712.07326.

[26]  Bikash K. Behera,et al.  A Verification Algorithm and Its Application to Quantum Locker in IBM Quantum Computer , 2017 .

[27]  Sebastian Deffner,et al.  Demonstration of entanglement assisted invariance on IBM's quantum experience , 2016, Heliyon.

[28]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[29]  Ari Mizel,et al.  Violation of noninvasive macrorealism by a superconducting qubit: Implementation of a Leggett-Garg test that addresses the clumsiness loophole , 2017 .

[30]  George Siopsis,et al.  Physical realization of topological quantum walks on IBM-Q and beyond , 2017, 1710.03615.

[31]  E. Diamanti,et al.  Best of both worlds , 2017 .

[32]  James R. Wootton,et al.  Repetition code of 15 qubits , 2017, 1709.00990.

[33]  Ayan Majumder,et al.  Experimental Realization of Secure Multiparty Quantum Summation Using Five-Qubit IBM Quantum Computer on Cloud , 2017 .

[34]  Arpita Maitra,et al.  Data Analytics in Quantum Paradigm: An Introduction , 2017 .

[35]  B. K. Behera,et al.  D ec 2 01 7 Discrimination of Highly Entangled Z-states in IBM Quantum Computer , 2017 .

[36]  Bikash K. Behera,et al.  Experimental Demonstration of the No Hiding Theorem Using a 5 Qubit Quantum Computer , 2017 .

[37]  Abhishek Shukla,et al.  Design and experimental realization of an optimal scheme for teleportation of an n-qubit quantum state , 2017, Quantum Information Processing.

[38]  Bikash K. Behera,et al.  Experimental Realization of Quantum Violation of Entropic Noncontextual Inequality in Four Dimension Using IBM Quantum Computer. , 2017, 1710.10717.

[39]  Mark J. Everitt,et al.  Simple procedure for phase-space measurement and entanglement validation , 2017 .

[40]  Z. Gedik,et al.  Optimization and experimental realization of the quantum permutation algorithm , 2017, 1708.07900.

[41]  Gary Forster,et al.  Generalized Grover's Algorithm for Multiple Phase Inversion States. , 2018, Physical review letters.

[42]  Diego Garc'ia-Mart'in,et al.  Five Experimental Tests on the 5-Qubit IBM Quantum Computer , 2017, 1712.05642.

[43]  Bikash K. Behera,et al.  Generalization and demonstration of an entanglement-based Deutsch–Jozsa-like algorithm using a 5-qubit quantum computer , 2017, Quantum Information Processing.

[44]  Bikash K. Behera,et al.  Automated error correction in IBM quantum computer and explicit generalization , 2017, Quantum Inf. Process..

[45]  Bikash K. Behera,et al.  Experimental demonstration of non-local controlled-unitary quantum gates using a five-qubit quantum computer , 2017, Quantum Inf. Process..

[46]  Bikash K. Behera,et al.  Nondestructive discrimination of a new family of highly entangled states in IBM quantum computer , 2017, Quantum Inf. Process..

[47]  Bikash K. Behera,et al.  Demonstration of the no-hiding theorem on the 5-Qubit IBM quantum computer in a category-theoretic framework , 2019, Quantum Inf. Process..

[48]  Bikash K. Behera,et al.  Demonstration of entanglement purification and swapping protocol to design quantum repeater in IBM quantum computer , 2017, Quantum Information Processing.

[49]  Daowen Qiu,et al.  Operator coherence dynamics in Grover's quantum search algorithm , 2019, Physical Review A.