The 2010 European Venus Explorer (EVE) mission proposal

The European Venus Explorer (EVE) mission described in this paper was proposed in December 2010 to ESA as an ‘M-class’ mission under the Cosmic Vision programme. It consists of a single balloon platform floating in the middle of the main convective cloud layer of Venus at an altitude of 55 km, where temperatures and pressures are benign (∼25°C and ∼0.5 bar). The balloon float lifetime would be at least 10 Earth days, long enough to guarantee at least one full circumnavigation of the planet. This offers an ideal platform for the two main science goals of the mission: study of the current climate through detailed characterization of cloud-level atmosphere, and investigation of the formation and evolution of Venus, through careful measurement of noble gas isotopic abundances. These investigations would provide key data for comparative planetology of terrestrial planets in our solar system and beyond.

[1]  S. Rasool Loss of Water from Venus , 1968 .

[2]  M. Mishchenko,et al.  Planetary polarization nephelometer , 2004 .

[3]  P. Drossart,et al.  Models of the global cloud structure on Venus derived from Venus Express observations , 2012 .

[4]  C. Bergh,et al.  The Runaway Greenhouse and the Accumulation of CO2 in the Venus Atmosphere , 1970, Nature.

[5]  J. Berthelier,et al.  The Mars analytical chemistry experiment , 2004, 2005 IEEE Aerospace Conference.

[6]  J. W. Hovenier,et al.  Interpretation of the polarization of Venus , 1974 .

[7]  C. Russell,et al.  The loss of ions from Venus through the plasma wake , 2007, Nature.

[8]  V. M. Linkin,et al.  Overview of VEGA Venus Balloon in Situ Meteorological Measurements , 1986, Science.

[9]  H. Keller,et al.  Indication of a near surface cloud layer on Venus} from reanalysis of {Venera 13/14 spectrophotometer data , 2004 .

[10]  D. Hunten,et al.  The microphysics of the clouds of Venus: Results of the Pioneer Venus Particle Size Spectrometer Experiment , 1980 .

[11]  V. Krasnopolsky Chemical composition of Venus atmosphere and clouds: Some unsolved problems , 2006 .

[12]  M. Gerasimov,et al.  European Venus Explorer (EVE): an in-situ mission to Venus , 2009 .

[13]  Robert G. Strom,et al.  The Resurfacing History of Venus , 1997 .

[14]  D. Crisp,et al.  Radiation in the Atmosphere of Venus , 2013 .

[15]  A. Vandaele,et al.  Preliminary characterization of the upper haze by SPICAV/SOIR solar occultation in UV to mid‐IR onboard Venus Express , 2009 .

[16]  V. M. Linkin,et al.  The VEGA Venus Balloon Experiment , 1986, Science.

[17]  K. Harrison,et al.  Aerial electromagnetic sounding of the lithosphere of Venus , 2012 .

[18]  J. Hansen,et al.  Light scattering in planetary atmospheres , 1974 .

[19]  János Lichtenberger,et al.  Ducted whistlers propagating in higher‐order guided mode and recorded on board of Compass‐2 satellite by the advanced Signal Analyzer and Sampler 2 , 2009 .

[20]  Yu. A. Surkov,et al.  Exploration of Terrestrial Planets from Spacecraft: Instrumentation, Investigation, Interpretation , 1990 .

[21]  M. Pätzold,et al.  Structure of the Venus neutral atmosphere as observed by the Radio Science experiment VeRa on Venus Express , 2009 .

[22]  K. Zahnle Earth After the Moon Forming Impact , 2006 .

[23]  Philippe Lognonné,et al.  A consistent picture of early hydrodynamic escape of Venus atmosphere explaining present Ne and Ar isotopic ratios and low oxygen atmospheric content , 2009 .

[24]  F. Leblanc,et al.  The evolution of Venus: Present state of knowledge and future exploration , 2012 .

[25]  Y. Shimazu,et al.  An energetic study of the evolution of the terrestrial and Cytherean atmospheres , 1968 .

[26]  J. Pollack,et al.  ORIGIN AND EVOLUTION OF THE ATMOSPHERE OF VENUS , 2022, Venus.

[27]  A. Horn,et al.  ATR-IR spectroscopic studies of the formation of sulfuric acid and sulfuric acid monohydrate films , 1999 .

[28]  J. Kasting,et al.  Loss of Water from Venus. I. Hydrodynamic Escape of Hydrogen , 1983 .

[29]  James J. Willis,et al.  TECTONIC OVERVIEW AND SYNTHESIS , 2022, Venus II.

[30]  J. Cimino The composition and vertical structure of the lower cloud deck on Venus , 1982 .

[31]  J. Blamont,et al.  European Venus Explorer: An in-situ mission to Venus using a balloon platform , 2009 .

[32]  V. M. Linkin,et al.  VEGA Balloon Dynamics and Vertical Winds in the Venus Middle Cloud Region , 1986, Science.

[33]  David Crisp,et al.  THE THERMAL BALANCE OF THE VENUS ATMOSPHERE , 2022, Venus II.

[34]  P. Drossart,et al.  Recent Hotspot Volcanism on Venus from VIRTIS Emissivity Data , 2010, Science.

[35]  P. Steffes,et al.  The Microwave Absorption and Abundance of Sulfuric Acid Vapor in the Venus Atmosphere Based on New Laboratory Measurements , 1998 .

[36]  S. Limaye,et al.  Venus atmospheric circulation: Known and unknown , 2007 .

[37]  J. Kasting,et al.  Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. , 1988, Icarus.

[38]  F. Guyot,et al.  Comparison of carbon, nitrogen and water budgets on Venus and the Earth , 2000 .