The single star path to Be stars

Context. Be stars are rapidly rotating B main sequence stars that show line emission due to an outflowing disc. By studying the evolution of rotating single star models, we can assess their contribution to the observed Be star populations. Aims. We identify the main effects that cause single stars to approach critical rotation as functions of initial mass and metallicity, and predict the properties of populations of rotating single stars. Methods. We perform population synthesis with single-star models of initial masses ranging between 3 and 30 M⊙ and initial equatorial rotation velocities between 0 and 600 km s−1 at compositions representing the Milky Way and the Large and Small Magellanic Clouds. These models include efficient core–envelope coupling mediated by internal magnetic fields and correspond to the maximum efficiency of Be star production. We predict Be star fractions and the positions of fast-rotating stars in the colour–magnitude diagram. Results. We identify stellar wind mass-loss and the convective core mass fraction as the key parameters determining the time dependance of the stellar rotation rates. Using empirical distributions of initial rotational velocities, our single-star models can reproduce the trends observed in Be star fractions with mass and metallicity. However, they fail to produce a significant number of stars rotating very close to the critical velocity. We also find that rapidly rotating Be stars in the Magellanic Clouds should have significant surface nitrogen enrichment, which may be in conflict with abundance determinations of Be stars. Conclusions. Single-star evolution might explain the high number of Be stars if 70 to 80% of critical rotation would be sufficient to produce the Be phenomenon. However, even in this case, the unexplained presence of many Be stars far below the cluster turn-off indicates the importance of the binary channel for Be star production.

[1]  C. Evans,et al.  The young massive SMC cluster NGC 330 seen by MUSE , 2019, Astronomy & Astrophysics.

[2]  N. Langer,et al.  Effects of Close Binary Evolution on the Main-sequence Morphology of Young Star Clusters , 2019, The Astrophysical Journal.

[3]  L. Balona,et al.  TESS observations of Be stars: a new interpretation , 2019, Monthly Notices of the Royal Astronomical Society.

[4]  G. Hallinan,et al.  Prevalence of SED Turndown among Classical Be Stars: Are All Be Stars Close Binaries? , 2019, The Astrophysical Journal.

[5]  B. Yanny,et al.  New Oe Stars in LAMOST DR5 , 2018, The Astrophysical Journal.

[6]  S. D. Mink,et al.  Clues about the scarcity of stripped-envelope stars from the evolutionary state of the sdO+Be binary system φ Persei , 2018, Astronomy & Astrophysics.

[7]  J. Anderson,et al.  Multiple stellar populations in Magellanic Cloud clusters – VI. A survey of multiple sequences and Be stars in young clusters , 2018, 1802.10538.

[8]  C. Georgy,et al.  The life cycles of Be viscous decretion discs: fundamental disc parameters of 54 SMC Be stars , 2018, 1802.07641.

[9]  Y. Balega,et al.  Stars: From Collapse to Collapse , 2017 .

[10]  F. Royer,et al.  Critical study of the distribution of rotational velocities of Be stars. I. Deconvolution methods, effects due to gravity darkening, macroturbulence, and binarity , 2016 .

[11]  U. Irvine,et al.  CLASSICAL Oe STARS IN THE FIELD OF THE SMALL MAGELLANIC CLOUD , 2016, 1601.03405.

[12]  O. H. Ramírez-Agudelo,et al.  The VLT-FLAMES Tarantula Survey - XXI. Stellar spin rates of O-type spectroscopic binaries , 2015, 1507.02286.

[13]  Y. Shao,et al.  ON THE FORMATION OF Be STARS THROUGH BINARY INTERACTION , 2014, 1410.0100.

[14]  F. Martins,et al.  A comparison of evolutionary tracks for single Galactic massive stars , 2013, 1310.7218.

[15]  N. Bastian,et al.  The VLT-FLAMES Tarantula Survey II: R139 revealed as a massive binary system , 2011, 1105.1775.

[16]  S. Keller,et al.  A study of Be stars in the Magellanic Clouds , 2013, 1309.1224.

[17]  G. Meynet,et al.  Populations of rotating stars - II. Rapid rotators and their link to Be-type stars , 2013, 1303.2393.

[18]  S. D. Mink,et al.  THE ROTATION RATES OF MASSIVE STARS: THE ROLE OF BINARY INTERACTION THROUGH TIDES, MASS TRANSFER, AND MERGERS , 2012, 1211.3742.

[19]  O. H. Ramírez-Agudelo,et al.  The VLT-FLAMES Tarantula Survey - X. Evidence for a bimodal distribution of rotational velocities for the single early B-type stars , 2012, 1212.2424.

[20]  N. Langer,et al.  Presupernova Evolution of Massive Single and Binary Stars , 2012, 1206.5443.

[21]  C. Evans,et al.  THE VLT-FLAMES TARANTULA SURVEY: THE FASTEST ROTATING O-TYPE STAR AND SHORTEST PERIOD LMC PULSAR—REMNANTS OF A SUPERNOVA DISRUPTED BINARY? , 2011, 1111.0157.

[22]  S. Smartt,et al.  The VLT-FLAMES survey of massive stars: Nitrogen abundances for Be-type stars in the Magellanic Clouds , 2011, 1109.6661.

[23]  M. Rieutord,et al.  Gravity darkening in rotating stars , 2011, 1109.3038.

[24]  C. Evans,et al.  Rotating massive main-sequence stars - I. Grids of evolutionary models and isochrones , 2011, 1102.0530.

[25]  P. Reig Be/X-ray binaries , 2011, 1101.5036.

[26]  M. McSwain,et al.  A STELLAR ROTATION CENSUS OF B STARS: FROM ZAMS TO TAMS , 2010, 1008.1761.

[27]  J. Fabregat,et al.  A slitless spectroscopic survey for Hα emission-line objects in SMC clusters , 2009, 0909.2303.

[28]  C. Neiner,et al.  The B0.5IVe CoRoT target HD 49330 - I. Photometric analysis from CoRoT data , 2009 .

[29]  J. Anderson,et al.  Multiple stellar populations in Magellanic Cloud clusters - I. An ordinary feature for intermediate age globulars in the LMC? , 2008, 0810.2558.

[30]  N. Langer,et al.  White dwarf spins from low mass stellar evolution models , 2008, 0802.3286.

[31]  G. Meynet,et al.  Evolution towards the critical limit and the origin of Be stars , 2007, 0711.1735.

[32]  S. Smartt,et al.  The VLT-FLAMES survey of massive stars: atmospheric parameters and rotational velocity distributions for B-type stars in the Magellanic Clouds , , 2007, 0711.2264.

[33]  L. Penny The Effect of Metallicity on the Rotation Rates of Massive Stars , 2007 .

[34]  E.P.J. van den Heuvel,et al.  Catalogue of high-mass X-ray binaries in the Galaxy (4th edition) , 2006 .

[35]  S.-C. Yoon,et al.  Single star progenitors of long gamma-ray bursts , 2006, astro-ph/0606637.

[36]  K. Hufbauer Stellar Structure and Evolution, 1924–1939 , 2006 .

[37]  C. Neiner,et al.  Effects of metallicity, star-formation conditions, and evolution in B and Be stars I. Large Magellanic Cloud, field of NGC 2004 (cid:1) , 2006 .

[38]  N. Langer,et al.  Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts , 2005, astro-ph/0508242.

[39]  S. Popov,et al.  Be–X-ray binaries and candidates , 2005, astro-ph/0505275.

[40]  M. McSwain,et al.  The Evolutionary Status of Be Stars: Results from a Photometric Study of Southern Open Clusters , 2005, astro-ph/0505032.

[41]  D. Lennon,et al.  A Be star with a low nitrogen abundance in the SMC cluster NGC 330 , 2004, astro-ph/0407258.

[42]  D. Gies,et al.  Effects of Metallicity on the Rotational Velocities of Massive Stars , 2004, astro-ph/0409757.

[43]  S. Woosley,et al.  Presupernova Evolution of Differentially Rotating Massive Stars Including Magnetic Fields , 2004, astro-ph/0409422.

[44]  S. Keller Rotation of Early B-type Stars in the Large Magellanic Cloud: the role of Evolution and Metallicity , 2004, astro-ph/0405129.

[45]  I. Howarth,et al.  Be-star rotation: how close to critical? , 2003, astro-ph/0312113.

[46]  J. Porter,et al.  Classical Be Stars , 2003, 1310.3962.

[47]  L. Girardi,et al.  Theoretical isochrones in several photometric systems I. Johnson-Cousins-Glass, HST/WFPC2, HST/NICMOS, Washington, and ESO Imaging Survey filter sets , 2002, astro-ph/0205080.

[48]  D. Baade,et al.  A spectroscopic search for variability of Be stars in the SMC , 2002 .

[49]  H. Spruit Dynamo action by differential rotation in a stably stratified stellar interior , 2001, astro-ph/0108207.

[50]  Andreas Kaufer,et al.  Stellar and circumstellar activity of the Be star $\mathsf{\mu}$ Centauri - III. Multiline nonradial pulsation modeling , 2001 .

[51]  R. Kudritzki,et al.  WINDS FROM HOT STARS , 2000 .

[52]  S. Woosley,et al.  Presupernova Evolution of Rotating Massive Stars. I. Numerical Method and Evolution of the Internal Stellar Structure , 1999, astro-ph/9904132.

[53]  J. Telting,et al.  The equatorial disc of the Be star X Persei , 1998 .

[54]  Henny J. G. L. M. Lamers,et al.  Terminal Velocities and the Bistability of Stellar Winds , 1995 .

[55]  O. Struve On the Origin of Bright Lines in Spectra of Stars of Class B , 1931 .

[56]  H. Zeipel,et al.  The Radiative Equilibrium of a Rotating System of Gaseous Masses , 1924 .