Gain-Scheduled MPC Design for Nonlinear Systems with Input Constraints

A novel methodology is proposed for discrete model predictive gain-scheduled controller design for nonlinear systems with input(hard)/output(soft) constraints for finite and infinite prediction horizons. The proposed design procedure is based on the linear parameter-varying (LPV) paradigm, affine parameter-dependent quadratic stability and on the notion of the parameter-varying guaranteed cost. The obtained design procedure is in the form of BMI. Numerical examples show the benefit of the proposed approach.

[1]  Jongrae Kim,et al.  Offline model predictive control-based gain scheduling for networked control systems [Brief Paper] , 2012 .

[2]  Mayuresh V. Kothare,et al.  Robust output feedback model predictive control using off-line linear matrix inequalities , 2002 .

[3]  Andrew G. Sparks,et al.  A gain scheduled multivariable design for a manual flight control system , 1992, [Proceedings 1992] The First IEEE Conference on Control Applications.

[4]  M. F. Hassan,et al.  An observer-based controller for nonlinear systems: A gain scheduling approach , 2014, Appl. Math. Comput..

[5]  Mayuresh V. Kothare,et al.  A framework for design of scheduled output feedback model predictive control , 2008 .

[6]  Vojtech Veselý,et al.  Robust Model Predictive Controller Design , 2014 .

[7]  Keith Glover,et al.  The application of scheduled H∞ controllers to a VSTOL aircraft , 1993, IEEE Trans. Autom. Control..

[8]  Ju H. Park,et al.  Output feedback model predictive control for LPV systems using parameter-dependent Lyapunov function , 2007, Appl. Math. Comput..

[9]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[10]  Vojtech Veselý,et al.  Gain-scheduled PID controller design , 2013 .

[11]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[12]  Vojtech Vesely,et al.  Discrete gain-scheduled controller design: Variable weighting approach , 2014, Proceedings of the 2014 15th International Carpathian Control Conference (ICCC).

[13]  P. Gahinet,et al.  Affine parameter-dependent Lyapunov functions and real parametric uncertainty , 1996, IEEE Trans. Autom. Control..

[14]  Manfred Morari,et al.  Robust constrained model predictive control using linear matrix inequalities , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[15]  Toshiharu Sugie,et al.  Output feedback model predictive control for LPV systems based on quasi-min-max algorithm , 2011, Autom..

[16]  Riccardo Scattolini,et al.  Stabilizing Model Predictive Control of Nonlinear Continuous Time Systems , 2003 .

[17]  Ali Abdullah,et al.  Model reference control of LPV systems , 2009, J. Frankl. Inst..

[18]  Vojtech Vesely,et al.  PID robust gain-scheduled controller design , 2014, 2014 European Control Conference (ECC).

[19]  Fulvio Forni,et al.  Gain-scheduled, model-based anti-windup for LPV systems , 2010, Autom..

[20]  Wilson J. Rugh,et al.  Gain scheduling for H-infinity controllers: a flight control example , 1993, IEEE Trans. Control. Syst. Technol..

[21]  Fulvio Forni,et al.  Model based, gain-scheduled anti-windup control for LPV systems , 2007, 2007 46th IEEE Conference on Decision and Control.