Dynamical Analysis of Three Distant Trans-Neptunian Objects with Similar Orbits
暂无分享,去创建一个
D. Gerdes | J. Frieman | O. Lahav | F. Abdalla | J. García-Bellido | A. Rosell | L. Costa | K. Honscheid | M. Maia | R. Ogando | F. Sobreira | M. Swanson | M. Kind | R. Gruendl | W. Hartley | J. Annis | M. Sako | H. Diehl | I. Sevilla-Noarbe | T. Abbott | S. Ávila | E. Bertin | D. Brooks | J. Carretero | C. Cunha | S. Desai | P. Doel | T. Eifler | B. Flaugher | D. Gruen | G. Gutiérrez | D. Hollowood | D. James | K. Kuehn | N. Kuropatkin | F. Menanteau | R. Miquel | A. Plazas | A. Romer | V. Scarpine | R. Schindler | M. Schubnell | M. Smith | E. Suchyta | G. Tarlé | A. Walker | M. Soares-Santos | E. Krause | E. Sánchez | B. Nord | V. Vikram | W. Wester | Y. Zhang | K. Napier | Hsing-Wen Lin | J. Vicente | F. Adams | J. Becker | C. Davis | T. Khain | S. Hamilton | K. Franson | L. Zullo | L. Markwardt | P. Bernardinelli | M. C. Kind | A. C. Rosell | H. Lin 林 | M. Swanson
[1] J.Lee,et al. THE DARK ENERGY CAMERA , 2004, The Dark Energy Survey.
[2] B. Yanny,et al. Dark energy survey operations: years 4 and 5 , 2018, Astronomical Telescopes + Instrumentation.
[3] R. Murray-Clay,et al. Trans-Neptunian Objects Transiently Stuck in Neptune’s Mean-motion Resonances: Numerical Simulations of the Current Population , 2018, The Astronomical Journal.
[4] D. Gerdes,et al. Discovery and Dynamical Analysis of an Extreme Trans-Neptunian Object with a High Orbital Inclination , 2018, The Astronomical Journal.
[5] T. Khain,et al. The Generation of the Distant Kuiper Belt by Planet Nine from an Initially Broad Perihelion Distribution , 2018, 1804.11281.
[6] R. Dawson,et al. OSSOS. IX. Two Objects in Neptune's 9:1 Resonance—Implications for Resonance Sticking in the Scattering Population , 2018, The Astronomical Journal.
[7] B. Yanny,et al. The Dark Energy Survey Image Processing Pipeline , 2018, 1801.03177.
[8] R. D. L. F. Marcos,et al. Dynamically correlated minor bodies in the outer Solar system , 2017, 1710.07610.
[9] M. He,et al. On the stability and collisions in triple stellar systems , 2017, 1710.04698.
[10] Chaotic Dynamics of Trans-Neptunian Objects Perturbed by Planet Nine , 2017, 1712.06547.
[11] A. Morbidelli,et al. Dynamical Evolution Induced by Planet Nine , 2017, 1710.01804.
[12] S. Aarseth,et al. Binary stripping as a plausible origin of correlated pairs of extreme trans-Neptunian objects , 2017, 1709.06813.
[13] R. D. L. F. Marcos,et al. Evidence for a possible bimodal distribution of the nodal distances of the extreme trans-Neptunian objects: Avoiding a trans-Plutonian planet or just plain bias? , 2017, 1706.06981.
[14] D. Gerdes,et al. Evaluating the Dynamical Stability of Outer Solar System Objects in the Presence of Planet Nine , 2017, 1706.06609.
[15] D. Gerdes,et al. Astrometric Calibration and Performance of the Dark Energy Camera , 2017, 1703.01679.
[16] F. Adams,et al. Effects of unseen additional planetary perturbers on compact extrasolar planetary systems , 2017, 1702.07714.
[17] Kyler Kuehn,et al. Discovery and Physical Characterization of a Large Scattered Disk Object at 92 au , 2017, 1702.00731.
[18] R. D. L. F. Marcos,et al. Visible spectra of (474640) 2004 VN112–2013 RF98 with OSIRIS at the 10.4 m GTC: evidence for binary dissociation near aphelion among the extreme trans-Neptunian objects , 2017, 1701.02534.
[19] G. Laughlin,et al. Constraints on Planet Nine’s Orbit and Sky Position within a Framework of Mean-motion Resonances , 2016, 1612.07774.
[20] C. Van Laerhoven,et al. The Canada–France Ecliptic Plane Survey (CFEPS)—High-latitude Component , 2016, 1608.02873.
[21] G. Valsecchi,et al. Study and application of the resonant secular dynamics beyond Neptune , 2016, 1611.04480.
[22] Observatoire de la Côte d'Azur,et al. Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties , 2016, 1609.04172.
[23] Scott S. Sheppard,et al. NEW EXTREME TRANS-NEPTUNIAN OBJECTS: TOWARD A SUPER-EARTH IN THE OUTER SOLAR SYSTEM , 2016, 1608.08772.
[24] H. Beust. Orbital clustering of distant Kuiper Belt Objects by hypothetical Planet 9. Secular or resonant , 2016, 1605.02473.
[25] K. Volk,et al. CORRALLING A DISTANT PLANET WITH EXTREME RESONANT KUIPER BELT OBJECTS , 2016, 1603.02196.
[26] Michael E. Brown,et al. EVIDENCE FOR A DISTANT GIANT PLANET IN THE SOLAR SYSTEM , 2016, 1601.05438.
[27] R. Nichol,et al. The Dark Energy Survey: more than dark energy - an overview , 2016, 1601.00329.
[28] C. B. D'Andrea,et al. OBSERVATION OF TWO NEW L4 NEPTUNE TROJANS IN THE DARK ENERGY SURVEY SUPERNOVA FIELDS , 2015, 1507.05177.
[29] M. Sullivan,et al. THE DIFFERENCE IMAGING PIPELINE FOR THE TRANSIENT SEARCH IN THE DARK ENERGY SURVEY , 2015, 1507.05137.
[30] R. C. Wolf,et al. AUTOMATED TRANSIENT IDENTIFICATION IN THE DARK ENERGY SURVEY , 2015, 1504.02936.
[31] A. Doressoundiram,et al. Search for sub-kilometre trans-Neptunian objects using CoRoT asteroseismology data , 2015 .
[32] C. Trujillo,et al. A Sedna-like body with a perihelion of 80 astronomical units , 2014, Nature.
[33] Mean Motion Resonances in Exoplanet Systems: An Investigation into Nodding Behavior , 2012, 1211.3078.
[34] The effect of orbital evolution on the Haumea (2003 EL61) collisional family , 2012, 1206.7069.
[35] M. Sullivan,et al. SUPERNOVA SIMULATIONS AND STRATEGIES FOR THE DARK ENERGY SURVEY , 2011, 1111.1969.
[36] J. Ortiz,et al. Rotational fission of trans-Neptunian objects: the case of Haumea , 2011, 1110.3637.
[37] Darin Ragozzine,et al. IDENTIFYING COLLISIONAL FAMILIES IN THE KUIPER BELT , 2011 .
[38] Robert A. Marcus,et al. THE FORMATION OF THE COLLISIONAL FAMILY AROUND THE DWARF PLANET HAUMEA , 2010, 1003.5822.
[39] Benoit Carry,et al. Characterisation of candidate members of (136108) Haumea's family II. Follow-up observations , 2009, 0912.3171.
[40] R. Sari,et al. THE CREATION OF HAUMEA'S COLLISIONAL FAMILY , 2009, 0906.3893.
[41] D. Ragozzine,et al. ORBITS AND MASSES OF THE SATELLITES OF THE DWARF PLANET HAUMEA (2003 EL61) , 2009, 0903.4213.
[42] E. Schaller,et al. Detection of Additional Members of the 2003 EL61 Collisional Family via Near-Infrared Spectroscopy , 2008, 0808.0185.
[43] B. G. Marsden,et al. Nomenclature in the Outer Solar System , 2008 .
[44] Harold F. Levison,et al. ON A SCATTERED-DISK ORIGIN FOR THE 2003 EL61 COLLISIONAL FAMILY—AN EXAMPLE OF THE IMPORTANCE OF COLLISIONS ON THE DYNAMICS OF SMALL BODIES , 2007, 0809.0553.
[45] Brian E. Granger,et al. IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.
[46] John D. Hunter,et al. Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.
[47] Darin Ragozzine,et al. A collisional family of icy objects in the Kuiper belt , 2007, Nature.
[48] B. Gaudi. Kepler and the Kuiper Belt , 2004, astro-ph/0404057.
[49] G. Bernstein,et al. The Size Distribution of Trans-Neptunian Bodies , 2003, astro-ph/0308467.
[50] Harold F. Levison,et al. Orbital and Collisional Evolution of the Irregular Satellites , 2003 .
[51] Harold F. Levison,et al. The recent breakup of an asteroid in the main-belt region , 2002, Nature.
[52] Eric Jones,et al. SciPy: Open Source Scientific Tools for Python , 2001 .
[53] G. Bernstein,et al. The Edge of the Solar System , 2000, astro-ph/0011037.
[54] B. Khushalani,et al. Orbit Fitting and Uncertainties for Kuiper Belt Objects , 2000, astro-ph/0008348.
[55] S. Tremaine,et al. The Formation and Extent of the Solar System Comet Cloud , 1987 .