Dynamical Analysis of Three Distant Trans-Neptunian Objects with Similar Orbits

This paper reports the discovery and orbital characterization of two extreme trans-Neptunian objects (ETNOs), 2016 QV89 and 2016 QU89, which have orbits that appear similar to that of a previously known object, 2013 UH15. All three ETNOs have semimajor axes a ≈ 172 au and eccentricities e ≈ 0.77. The angular elements (i, ω, Ω) vary by 6°, 15°, and 49°, respectively, between the three objects. The two new objects add to the small number of TNOs currently known to have semimajor axes between 150 and 250 au, and they serve as an interesting dynamical laboratory to study the outer realm of our solar system. Using a large ensemble of numerical integrations, we find that the orbits are expected to reside in close proximity in the (a, e) phase plane for roughly 100 Myr before diffusing to more separated values. We find that an explanation for the orbital configuration of the bodies as a collision product is disfavored. We then explore other scenarios that could influence their orbits. With aphelion distances over 300 au, the orbits of these ETNOs extend far beyond the classical Kuiper Belt and an order of magnitude beyond Neptune. As a result, their orbital dynamics can be affected by the proposed new solar system member, referred to as Planet Nine in this work. With perihelion distances of 35–40 au, these orbits are also influenced by resonant interactions with Neptune. A full assessment of any possible new solar system planets must thus take into account this emerging class of TNOs.

[1]  J.Lee,et al.  THE DARK ENERGY CAMERA , 2004, The Dark Energy Survey.

[2]  B. Yanny,et al.  Dark energy survey operations: years 4 and 5 , 2018, Astronomical Telescopes + Instrumentation.

[3]  R. Murray-Clay,et al.  Trans-Neptunian Objects Transiently Stuck in Neptune’s Mean-motion Resonances: Numerical Simulations of the Current Population , 2018, The Astronomical Journal.

[4]  D. Gerdes,et al.  Discovery and Dynamical Analysis of an Extreme Trans-Neptunian Object with a High Orbital Inclination , 2018, The Astronomical Journal.

[5]  T. Khain,et al.  The Generation of the Distant Kuiper Belt by Planet Nine from an Initially Broad Perihelion Distribution , 2018, 1804.11281.

[6]  R. Dawson,et al.  OSSOS. IX. Two Objects in Neptune's 9:1 Resonance—Implications for Resonance Sticking in the Scattering Population , 2018, The Astronomical Journal.

[7]  B. Yanny,et al.  The Dark Energy Survey Image Processing Pipeline , 2018, 1801.03177.

[8]  R. D. L. F. Marcos,et al.  Dynamically correlated minor bodies in the outer Solar system , 2017, 1710.07610.

[9]  M. He,et al.  On the stability and collisions in triple stellar systems , 2017, 1710.04698.

[10]  Chaotic Dynamics of Trans-Neptunian Objects Perturbed by Planet Nine , 2017, 1712.06547.

[11]  A. Morbidelli,et al.  Dynamical Evolution Induced by Planet Nine , 2017, 1710.01804.

[12]  S. Aarseth,et al.  Binary stripping as a plausible origin of correlated pairs of extreme trans-Neptunian objects , 2017, 1709.06813.

[13]  R. D. L. F. Marcos,et al.  Evidence for a possible bimodal distribution of the nodal distances of the extreme trans-Neptunian objects: Avoiding a trans-Plutonian planet or just plain bias? , 2017, 1706.06981.

[14]  D. Gerdes,et al.  Evaluating the Dynamical Stability of Outer Solar System Objects in the Presence of Planet Nine , 2017, 1706.06609.

[15]  D. Gerdes,et al.  Astrometric Calibration and Performance of the Dark Energy Camera , 2017, 1703.01679.

[16]  F. Adams,et al.  Effects of unseen additional planetary perturbers on compact extrasolar planetary systems , 2017, 1702.07714.

[17]  Kyler Kuehn,et al.  Discovery and Physical Characterization of a Large Scattered Disk Object at 92 au , 2017, 1702.00731.

[18]  R. D. L. F. Marcos,et al.  Visible spectra of (474640) 2004 VN112–2013 RF98 with OSIRIS at the 10.4 m GTC: evidence for binary dissociation near aphelion among the extreme trans-Neptunian objects , 2017, 1701.02534.

[19]  G. Laughlin,et al.  Constraints on Planet Nine’s Orbit and Sky Position within a Framework of Mean-motion Resonances , 2016, 1612.07774.

[20]  C. Van Laerhoven,et al.  The Canada–France Ecliptic Plane Survey (CFEPS)—High-latitude Component , 2016, 1608.02873.

[21]  G. Valsecchi,et al.  Study and application of the resonant secular dynamics beyond Neptune , 2016, 1611.04480.

[22]  Observatoire de la Côte d'Azur,et al.  Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties , 2016, 1609.04172.

[23]  Scott S. Sheppard,et al.  NEW EXTREME TRANS-NEPTUNIAN OBJECTS: TOWARD A SUPER-EARTH IN THE OUTER SOLAR SYSTEM , 2016, 1608.08772.

[24]  H. Beust Orbital clustering of distant Kuiper Belt Objects by hypothetical Planet 9. Secular or resonant , 2016, 1605.02473.

[25]  K. Volk,et al.  CORRALLING A DISTANT PLANET WITH EXTREME RESONANT KUIPER BELT OBJECTS , 2016, 1603.02196.

[26]  Michael E. Brown,et al.  EVIDENCE FOR A DISTANT GIANT PLANET IN THE SOLAR SYSTEM , 2016, 1601.05438.

[27]  R. Nichol,et al.  The Dark Energy Survey: more than dark energy - an overview , 2016, 1601.00329.

[28]  C. B. D'Andrea,et al.  OBSERVATION OF TWO NEW L4 NEPTUNE TROJANS IN THE DARK ENERGY SURVEY SUPERNOVA FIELDS , 2015, 1507.05177.

[29]  M. Sullivan,et al.  THE DIFFERENCE IMAGING PIPELINE FOR THE TRANSIENT SEARCH IN THE DARK ENERGY SURVEY , 2015, 1507.05137.

[30]  R. C. Wolf,et al.  AUTOMATED TRANSIENT IDENTIFICATION IN THE DARK ENERGY SURVEY , 2015, 1504.02936.

[31]  A. Doressoundiram,et al.  Search for sub-kilometre trans-Neptunian objects using CoRoT asteroseismology data , 2015 .

[32]  C. Trujillo,et al.  A Sedna-like body with a perihelion of 80 astronomical units , 2014, Nature.

[33]  Mean Motion Resonances in Exoplanet Systems: An Investigation into Nodding Behavior , 2012, 1211.3078.

[34]  The effect of orbital evolution on the Haumea (2003 EL61) collisional family , 2012, 1206.7069.

[35]  M. Sullivan,et al.  SUPERNOVA SIMULATIONS AND STRATEGIES FOR THE DARK ENERGY SURVEY , 2011, 1111.1969.

[36]  J. Ortiz,et al.  Rotational fission of trans-Neptunian objects: the case of Haumea , 2011, 1110.3637.

[37]  Darin Ragozzine,et al.  IDENTIFYING COLLISIONAL FAMILIES IN THE KUIPER BELT , 2011 .

[38]  Robert A. Marcus,et al.  THE FORMATION OF THE COLLISIONAL FAMILY AROUND THE DWARF PLANET HAUMEA , 2010, 1003.5822.

[39]  Benoit Carry,et al.  Characterisation of candidate members of (136108) Haumea's family II. Follow-up observations , 2009, 0912.3171.

[40]  R. Sari,et al.  THE CREATION OF HAUMEA'S COLLISIONAL FAMILY , 2009, 0906.3893.

[41]  D. Ragozzine,et al.  ORBITS AND MASSES OF THE SATELLITES OF THE DWARF PLANET HAUMEA (2003 EL61) , 2009, 0903.4213.

[42]  E. Schaller,et al.  Detection of Additional Members of the 2003 EL61 Collisional Family via Near-Infrared Spectroscopy , 2008, 0808.0185.

[43]  B. G. Marsden,et al.  Nomenclature in the Outer Solar System , 2008 .

[44]  Harold F. Levison,et al.  ON A SCATTERED-DISK ORIGIN FOR THE 2003 EL61 COLLISIONAL FAMILY—AN EXAMPLE OF THE IMPORTANCE OF COLLISIONS ON THE DYNAMICS OF SMALL BODIES , 2007, 0809.0553.

[45]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[46]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[47]  Darin Ragozzine,et al.  A collisional family of icy objects in the Kuiper belt , 2007, Nature.

[48]  B. Gaudi Kepler and the Kuiper Belt , 2004, astro-ph/0404057.

[49]  G. Bernstein,et al.  The Size Distribution of Trans-Neptunian Bodies , 2003, astro-ph/0308467.

[50]  Harold F. Levison,et al.  Orbital and Collisional Evolution of the Irregular Satellites , 2003 .

[51]  Harold F. Levison,et al.  The recent breakup of an asteroid in the main-belt region , 2002, Nature.

[52]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[53]  G. Bernstein,et al.  The Edge of the Solar System , 2000, astro-ph/0011037.

[54]  B. Khushalani,et al.  Orbit Fitting and Uncertainties for Kuiper Belt Objects , 2000, astro-ph/0008348.

[55]  S. Tremaine,et al.  The Formation and Extent of the Solar System Comet Cloud , 1987 .