Differential Expression of Hippocampal Circular RNAs in the BTBR Mouse Model for Autism Spectrum Disorder

[1]  Jørgen Kjems,et al.  The biogenesis, biology and characterization of circular RNAs , 2019, Nature Reviews Genetics.

[2]  A. Ornoy,et al.  Prevention or Amelioration of Autism-Like Symptoms in Animal Models: Will it Bring Us Closer to Treating Human ASD? , 2019, International journal of molecular sciences.

[3]  T. Freund,et al.  Regulation of Hippocampal 5-HT Release by P2X7 Receptors in Response to Optogenetic Stimulation of Median Raphe Terminals of Mice , 2017, Front. Mol. Neurosci..

[4]  Carmen Birchmeier,et al.  Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function , 2017, Science.

[5]  T. Dinan,et al.  Microbiota-related Changes in Bile Acid & Tryptophan Metabolism are Associated with Gastrointestinal Dysfunction in a Mouse Model of Autism , 2017, EBioMedicine.

[6]  S. Kadener,et al.  CircRNAs in the brain , 2017, RNA biology.

[7]  Cheng-xiang Yang,et al.  Identification of the Spinal Expression Profile of Non-coding RNAs Involved in Neuropathic Pain Following Spared Nerve Injury by Sequence Analysis , 2017, Front. Mol. Neurosci..

[8]  Luis de la Torre Ubieta,et al.  Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism , 2016, Nature.

[9]  Walter J. Lukiw,et al.  Deficiency in the Ubiquitin Conjugating Enzyme UBE2A in Alzheimer’s Disease (AD) is Linked to Deficits in a Natural Circular miRNA-7 Sponge (circRNA; ciRS-7) , 2016, Genes.

[10]  F. Middleton,et al.  A Comparative Review of microRNA Expression Patterns in Autism Spectrum Disorder , 2016, Front. Psychiatry.

[11]  Wei Chen,et al.  Circular RNAs in Brain and Other Tissues: A Functional Enigma , 2016, Trends in Neurosciences.

[12]  T Grant Belgard,et al.  Genome-wide, integrative analysis implicates microRNA dysregulation in autism spectrum disorder , 2016, Nature Neuroscience.

[13]  Y. Bozzi,et al.  Comparative Gene Expression Analysis of Two Mouse Models of Autism: Transcriptome Profiling of the BTBR and En2−/− Hippocampus , 2016, Front. Neurosci..

[14]  Andrew D. Rouillard,et al.  Enrichr: a comprehensive gene set enrichment analysis web server 2016 update , 2016, Nucleic Acids Res..

[15]  J. Veenstra-VanderWeele,et al.  The serotonin system in autism spectrum disorder: From biomarker to animal models , 2016, Neuroscience.

[16]  Julia Salzman,et al.  Circular RNA Expression: Its Potential Regulation and Function. , 2016, Trends in genetics : TIG.

[17]  Yan Li,et al.  Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs , 2016, Nature Communications.

[18]  Q. Zhuge,et al.  Interleukin-4 Ameliorates the Functional Recovery of Intracerebral Hemorrhage Through the Alternative Activation of Microglia/Macrophage , 2016, Front. Neurosci..

[19]  P. Leedman,et al.  MicroRNA-7: A miRNA with expanding roles in development and disease. , 2015, International Journal of Biochemistry and Cell Biology.

[20]  W. Wood,et al.  Hippocampal Transcriptomic and Proteomic Alterations in the BTBR Mouse Model of Autism Spectrum Disorder , 2015, Front. Physiol..

[21]  L. Cavalcante-Silva,et al.  Obesity-Driven Gut Microbiota Inflammatory Pathways to Metabolic Syndrome , 2015, Front. Physiol..

[22]  M. Owen,et al.  Genetic disruption of voltage-gated calcium channels in psychiatric and neurological disorders , 2015, Progress in Neurobiology.

[23]  Nikolaus Rajewsky,et al.  Identification and Characterization of Circular RNAs As a New Class of Putative Biomarkers in Human Blood , 2015, PloS one.

[24]  H. Yost,et al.  Heparan sulfate proteoglycans: a sugar code for vertebrate development? , 2015, Development.

[25]  S. Nelson,et al.  Excitatory/Inhibitory Balance and Circuit Homeostasis in Autism Spectrum Disorders , 2015, Neuron.

[26]  Junwei Han,et al.  ESEA: Discovering the Dysregulated Pathways based on Edge Set Enrichment Analysis , 2015, Scientific Reports.

[27]  T. Wieland,et al.  Loss-of-function variants in HIVEP2 are a cause of intellectual disability , 2015, European Journal of Human Genetics.

[28]  Petar Glažar,et al.  Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. , 2015, Molecular cell.

[29]  D. Wong,et al.  Non-Coding RNAs in Saliva: Emerging Biomarkers for Molecular Diagnostics , 2015, International journal of molecular sciences.

[30]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[31]  L. Gagnon,et al.  CACNA1A haploinsufficiency causes cognitive impairment, autism and epileptic encephalopathy with mild cerebellar symptoms , 2015, European Journal of Human Genetics.

[32]  E. Schuman,et al.  Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity , 2015, Nature Neuroscience.

[33]  S. Salzberg,et al.  StringTie enables improved reconstruction of a transcriptome from RNA-seq reads , 2015, Nature Biotechnology.

[34]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[35]  Petar Glažar,et al.  circBase: a database for circular RNAs , 2014, RNA.

[36]  G. Schratt,et al.  MicroRNAs and synaptic plasticity—a mutual relationship , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[37]  E. Westhof,et al.  Biogenesis of Circular RNAs , 2014, Cell.

[38]  Michael F. Walker,et al.  Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons , 2014, Molecular Psychiatry.

[39]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[40]  J. Hensler,et al.  Enhanced novelty-induced corticosterone spike and upregulated serotonin 5-HT1A and cannabinoid CB1 receptors in adolescent BTBR mice , 2014, Psychoneuroendocrinology.

[41]  Walter J. Lukiw,et al.  Circular RNA (circRNA) in Alzheimer's disease (AD) , 2013, Front. Genet..

[42]  Joshua L Plotkin,et al.  MicroRNA-128 Governs Neuronal Excitability and Motor Behavior in Mice , 2013, Science.

[43]  A. Niculescu Convergent functional genomics of psychiatric disorders , 2013, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[44]  V. Bolivar,et al.  The BTBR T + tf/J mouse model for autism spectrum disorders–in search of biomarkers , 2013, Behavioural Brain Research.

[45]  Janet B W Williams,et al.  Diagnostic and Statistical Manual of Mental Disorders , 2013 .

[46]  V. Bolivar,et al.  The maternal autoimmune environment affects the social behavior of offspring , 2013, Journal of Neuroimmunology.

[47]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[48]  D. Blanchard,et al.  Heparan sulfate deficiency in autistic postmortem brain tissue from the subventricular zone of the lateral ventricles , 2013, Behavioural Brain Research.

[49]  Sebastian D. Mackowiak,et al.  Circular RNAs are a large class of animal RNAs with regulatory potency , 2013, Nature.

[50]  Michael E. Greenberg,et al.  Activity-dependent neuronal signalling and autism spectrum disorder , 2013, Nature.

[51]  Shambhu Bhat,et al.  CACNA1C (Cav1.2) in the pathophysiology of psychiatric disease , 2012, Progress in Neurobiology.

[52]  M. Mehler,et al.  Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease , 2012, Nature Reviews Neuroscience.

[53]  Hugo Y. K. Lam,et al.  Personal Omics Profiling Reveals Dynamic Molecular and Medical Phenotypes , 2012, Cell.

[54]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[55]  V. Bolivar,et al.  BTBR T+tf/J mice: Autism-relevant behaviors and reduced fractone-associated heparan sulfate , 2012, Neuroscience & Biobehavioral Reviews.

[56]  E. Walker,et al.  Diagnostic and Statistical Manual of Mental Disorders , 2013 .

[57]  Mark Ellisman,et al.  Cadherin-9 Regulates Synapse-Specific Differentiation in the Developing Hippocampus , 2011, Neuron.

[58]  Min Zhuo,et al.  Neuronal and microglial mechanisms of neuropathic pain , 2011, Molecular Brain.

[59]  A. Sheikh,et al.  Retracted: Association of upregulated Ras/Raf/ERK1/2 signaling with autism , 2011, Genes, brain, and behavior.

[60]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[61]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[62]  Robert T. Schultz,et al.  Common genetic variants on 5p14.1 associate with autism spectrum disorders , 2009, Nature.

[63]  J. Gilbert,et al.  A Genome‐wide Association Study of Autism Reveals a Common Novel Risk Locus at 5p14.1 , 2009, Annals of human genetics.

[64]  D. Geschwind Autism: Many Genes, Common Pathways? , 2008, Cell.

[65]  D. Geschwind,et al.  Advances in autism genetics: on the threshold of a new neurobiology , 2008, Nature Reviews Genetics.

[66]  H. McFarlane,et al.  Autism‐like behavioral phenotypes in BTBR T+tf/J mice , 2008, Genes, brain, and behavior.

[67]  J. Keene RNA regulons: coordination of post-transcriptional events , 2007, Nature Reviews Genetics.

[68]  Jianmin Wu,et al.  KOBAS server: a web-based platform for automated annotation and pathway identification , 2006, Nucleic Acids Res..

[69]  E. McLaughlin,et al.  The RNA-binding protein Musashi is required intrinsically to maintain stem cell identity. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[70]  Michael Q. Zhang,et al.  Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing , 2006, Nucleic acids research.

[71]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[72]  A. West,et al.  Calcium regulation of neuronal gene expression , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Christian Rosenmund,et al.  Definition of the Readily Releasable Pool of Vesicles at Hippocampal Synapses , 1996, Neuron.

[74]  Andrew V. Goldberg,et al.  Combinatorial algorithms for the generalized circulation problem , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[75]  D. Lipman,et al.  Improved tools for biological sequence comparison. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Feng Li,et al.  The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. , 2015, Clinical chemistry.

[77]  E. Weeber,et al.  Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of αCaMKII inhibitory phosphorylation , 2007, Nature Neuroscience.