Fuzzy Argumentation System for Decision Support

We introduce in this paper a quantitative preference based argumentation system relying on ASPIC argumentation framework and fuzzy set theory. The knowledge base is fuzzified to allow the experts to express their expertise (premises and rules) attached with grades of importance in the unit interval. Arguments are attached with a score aggregating the importance expressed on their premises and rules. Extensions are then computed and the strength of each of which can also be obtained based on its strong arguments. The strengths are used to rank fuzzy extensions from the strongest to the weakest one, upon which decisions can be made. The approach is finally used for decision making in a real world application within the EcoBioCap project.

[1]  Trevor J. M. Bench-Capon,et al.  On the Instantiation of Knowledge Bases in Abstract Argumentation Frameworks , 2013, CLIMA.

[2]  Phan Minh Dung,et al.  On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games , 1995, Artif. Intell..

[3]  Srdjan Vesic,et al.  Repairing Preference-Based Argumentation Frameworks , 2009, IJCAI.

[4]  Christophe Labreuche,et al.  Argumentation Framework with Fuzzy Preference Relations , 2010, IPMU.

[5]  Guillermo Ricardo Simari,et al.  A logic programming framework for possibilistic argumentation: Formalization and logical properties , 2008, Fuzzy Sets Syst..

[6]  Jeff Z. Pan,et al.  An Argument-Based Approach to Using Multiple Ontologies , 2009, SUM.

[7]  Guillermo Ricardo Simari,et al.  A Logic Programming Framework for Possibilistic Argumentation with Vague Knowledge , 2004, UAI.

[8]  Serena Villata,et al.  Changing One ’ s Mind : Erase or Rewind ? Possibilistic Belief Revision with Fuzzy Argumentation based on Trust , 2011 .

[9]  Bernadette Bouchon-Meunier,et al.  Fuzzy Sets and Possibility Theory in Approximate and Plausible Reasoning , 1999 .

[10]  Srdjan Vesic,et al.  Handling Inconsistency with Preference-Based Argumentation , 2010, SUM.

[11]  Eyke Hüllermeier,et al.  Computational Intelligence for Knowledge-Based Systems Design, 13th International Conference on Information Processing and Management of Uncertainty, IPMU 2010, Dortmund, Germany, June 28 - July 2, 2010. Proceedings , 2010, IPMU.

[12]  Henry Prakken,et al.  A general account of argumentation with preferences , 2013, Artif. Intell..

[13]  Adina Magda Florea,et al.  Fuzzy Labeling for Argumentation Frameworks , 2011, ArgMAS.

[14]  Sébastien Destercke,et al.  A flexible bipolar querying approach with imprecise data and guaranteed results , 2011, Fuzzy Sets Syst..

[15]  Martin Caminada,et al.  On the evaluation of argumentation formalisms , 2007, Artif. Intell..

[16]  Guillermo Ricardo Simari,et al.  Formalizing argumentative reasoning in a possibilistic logic programming setting with fuzzy unification , 2008, Int. J. Approx. Reason..

[17]  Henri Prade,et al.  An Argumentation-Based Approach to Multiple Criteria Decision , 2005, ECSQARU.

[18]  Martine De Cock,et al.  Fuzzy Argumentation Frameworks , 2008 .

[19]  Guillermo Ricardo Simari,et al.  Defeasible logic programming: an argumentative approach , 2003, Theory and Practice of Logic Programming.

[20]  Iyad Rahwan,et al.  Argumentation in Multi-Agent Systems , 2011, Lecture Notes in Computer Science.

[21]  Cees Witteveen,et al.  Fuzzy Argumentation for Trust , 2008, CLIMA.

[22]  Michael Clarke,et al.  Symbolic and Quantitative Approaches to Reasoning and Uncertainty , 1991, Lecture Notes in Computer Science.

[23]  Henry Prakken,et al.  An abstract framework for argumentation with structured arguments , 2010, Argument Comput..

[24]  Ronald R. Yager,et al.  General Multiple-Objective Decision Functions and Linguistically Quantified Statements , 1984, Int. J. Man Mach. Stud..

[25]  Ioan Alfred Letia,et al.  Towards Pragmatic Argumentative Agents within a Fuzzy Description Logic Framework , 2010, ArgMAS.