Roughness and near‐surface density of Mars from SHARAD radar echoes

[1] We present a technique for estimating Mars topographic roughness on horizontal scales from about 10 m to 100 m using Shallow Radar (SHARAD) sounding data. Our results offer a view of surface properties complementary to Mars Orbiter Laser Altimeter (MOLA) pulse-width or baseline roughness maps and can be compared to SHARAD peak-echo properties to infer deviations from the average near-surface density. Latitudinal averaging of SHARAD-derived roughness over Arabia and Noachis Terrae shows good agreement with MOLA-derived roughness and provides clear evidence for latitude-dependent mantling deposits previously inferred from image data. In northwestern Gordii Dorsum, we find that bulk density in at least the upper few meters is significantly lower than in other units of the Medusae Fossae Formation. We observe the same behavior indicative of low near-surface density in wind-eroded crater fill in the southern highlands. Combining surface-properties analysis, subsurface sounding, and high-resolution optical images, we show that the Pavonis Mons fan-shaped deposit differs significantly from lobate debris aprons which SHARAD has shown to be ice-cored. There are no internal radar reflections from the smooth-facies portion of the Pavonis Mons fan-shaped deposit, and we suggest that these deposits are either quite thin or have little dielectric (i.e., density) contrast with the underlying terrain. Future application of these techniques can identify other low-density units across Mars, assist in the mapping of regional volatile-rich mantling units, and provide new constraints on the physical properties of the polar layered terrain.

[1]  G. Leonard Tyler Comparison of quasi-specular radar scatter from the moon with surface parameters obtained from images , 1979 .

[2]  M. Mellon,et al.  DO SHALLOW RADAR SOUNDINGS REVEAL POSSIBLE NEAR-SURFACE LAYERING THROUGH- OUT THE NORTHERN LOWLANDS OF MARS? , 2009 .

[3]  M. Zuber,et al.  Mars Orbiter Laser Altimeter pulse width measurements and footprint‐scale roughness , 2003 .

[4]  S. Scheidt,et al.  Hesperian Age for Western Medusae Fossae Formation, Mars , 2012, Science.

[5]  D. H. Scott,et al.  Ignimbrites of Amazonis Planitia region of Mars , 1982 .

[6]  Ronald Greeley,et al.  Geologic map of the eastern equatorial region of Mars , 1987 .

[7]  Kenneth S. Edgett,et al.  Geologic context of the Mars radar "Stealth" region , 1997 .

[8]  Roberto Seu,et al.  The SHAllow RADar (SHARAD) Onboard the NASA MRO Mission , 2011, Proceedings of the IEEE.

[9]  Roberto Orosei,et al.  Radar Sounding of the Medusae Fossae Formation Mars: Equatorial Ice or Dry, Low-Density Deposits? , 2007, Science.

[10]  Bruce A. Campbell,et al.  Mars mapping with delay-Doppler radar , 1999 .

[11]  Roberto Orosei,et al.  Quantitative analysis of Mars surface radar reflectivity at 20 MHz , 2012 .

[12]  M. Shepard,et al.  Limits on inference of Mars small‐scale topography from MOLA data , 2003 .

[13]  A. Ivanov,et al.  Estimation of the total electron content of the Martian ionosphere using radar sounder surface echoes , 2007 .

[14]  D. Muhleman,et al.  Radar Images of Mars , 1991, Science.

[15]  T. Hagfors,et al.  Backscattering from an undulating surface with applications to radar returns from the Moon , 1964 .

[16]  R. Simpson,et al.  Radar scattering laws for the lunar surface , 1982 .

[17]  James W. Head,et al.  Kilometer‐scale roughness of Mars: Results from MOLA data analysis , 2000 .

[18]  Peter G. Ford,et al.  Venus topography and kilometer‐scale slopes , 1992 .

[19]  David E. Shean,et al.  Origin and evolution of a cold-based tropical mountain glacier on Mars: The Pavonis Mons fan-shaped deposit , 2005 .

[20]  Ali Safaeinili,et al.  Radar Sounding Evidence for Buried Glaciers in the Southern Mid-Latitudes of Mars , 2008, Science.

[21]  Wlodek Kofman,et al.  MARSIS surface reflectivity of the south residual cap of Mars , 2009 .

[22]  D. H. Scott,et al.  GEOLOGIC MAP OF THE WESTERN EQUATORIAL REGION OF MARS , 1986 .

[23]  M. Becker Effect of tracer buoyancy on tracer experiments conducted in fractured crystalline bedrock , 2003 .

[24]  Roberto Orosei,et al.  Shallow radar (SHARAD) sounding observations of the Medusae Fossae Formation, Mars , 2009 .

[25]  J. Muller,et al.  Mapping Medusae Fossae Formation Materials in the Southern Highlands of Mars , 2010 .

[26]  M. Nolan,et al.  Arecibo radar imagery of Mars: The major volcanic provinces , 2012 .

[27]  Roberto Orosei,et al.  SHARAD radar sounding of the Vastitas Borealis Formation in Amazonis Planitia , 2008 .

[28]  James W. Head,et al.  Cold-based Mountain Glaciers on Mars: Western Arsia Mons Fan-shaped Deposits , 2003 .

[29]  D. H. Scott,et al.  Geologic map of Pavonis Mons Volcano, Mars , 1998 .

[30]  James W. Head,et al.  Mars: Nature and evolution of young latitude‐dependent water‐ice‐rich mantle , 2002 .

[31]  M. Shepard,et al.  Self‐affine (fractal) topography: Surface parameterization and radar scattering , 1995 .

[32]  J. Head,et al.  The age of the Medusae Fossae Formation: Evidence of Hesperian emplacement from crater morphology, stratigraphy, and ancient lava contacts , 2010 .

[33]  D. Barrick,et al.  SCATTERING FROM SURFACES WITH DIFFERENT ROUGHNESS SCALES: ANALYSIS AND INTERPRETATION , 1967 .

[34]  John F. Mustard,et al.  Recent ice ages on Mars , 2003, Nature.

[35]  M. Shepard,et al.  Coherent and incoherent components in near-nadir radar scattering: Applications to radar sounding of Mars , 2003 .

[36]  J. Mustard,et al.  Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice , 2001, Nature.

[37]  H. Frey,et al.  Medusae Fossae Formation: New perspectives from Mars Global Surveyor , 2002 .

[38]  Alessandro Frigeri,et al.  Radar evidence for ice in lobate debris aprons in the mid‐northern latitudes of Mars , 2009 .

[39]  T. Farr,et al.  The roughness of natural terrain: A planetary and remote sensing perspective , 2001 .