Discrete Ionic Complexes of Highly Isoselective Zirconocenes. Solution Dynamics, Trimethylaluminum Adducts, and Implications in Propylene Polymerization

Discrete ionic complexes belonging to two main families of highly isoselective polymerization zirconocene systems, C1-symmetric {Cp/Flu} (a,b) and C2-symmetric {SBI} (c) systems, have been scrutinized. The ion pair reorganization processes for inner-sphere ion pairs (ISIPs) 3a,b-MeB(C6F5)3, 3c-MeB(C6F5)3, and 3c-MeAl(C6F5)3 and for the outer-sphere ion pair (OSIP) AlMe3 adducts [6b,c]+[B(C6F5)4]–, quantified by dynamic NMR analysis, were found to feature lower activation barriers for the {SBI}-based systems in comparison to those for the {Cp/Flu}-based congeners. The higher electrophilic character of the {Cp/Flu}-based cationic systems was corroborated by UV/vis spectroscopy studies coupled with TD-DFT calculations. These fundamental differences between the ionic systems of the two metallocene families are discussed in light of their respective propylene polymerization performances, and reasons for the higher productivity of {SBI} systems in comparison to {Cp-Flu} systems are proposed.

[1]  C. Hilty,et al.  In Situ Determination of Tacticity, Deactivation, and Kinetics in [rac-(C2H4(1-Indenyl)2)ZrMe][B(C6F5)4] and [Cp2ZrMe][B(C6F5)4]-Catalyzed Polymerization of 1-Hexene Using (13)C Hyperpolarized NMR. , 2015, Journal of the American Chemical Society.

[2]  L. Haspeslagh,et al.  Are Solvent and Dispersion Effects Crucial in Olefin Polymerization DFT Calculations? Some Insights from Propylene Coordination and Insertion Reactions with Group 3 and 4 Metallocenes , 2015 .

[3]  T. Roisnel,et al.  iPP–sPP Stereoblocks or Blends? Studies on the Synthesis of Isotactic–Syndiotactic Polypropylene Using Single C1‐Symmetric {Ph2C‐(Flu)(3‐Me3Si‐Cp)}ZrR2 Metallocene Precatalysts , 2014 .

[4]  V. Busico,et al.  Identification and Count of the Active Sites in Olefin Polymerization Catalysis by Oxygen Quench , 2014 .

[5]  J. Bercaw,et al.  Formation of trivalent zirconocene complexes from ansa-zirconocene-based olefin-polymerization precatalysts: an EPR- and NMR-spectroscopic study. , 2013, Journal of the American Chemical Society.

[6]  F. Ghiotto,et al.  Rapid evaluation of catalysts and MAO activators by kinetics: what controls polymer molecular weight and activity in metallocene/MAO catalysts? , 2013, Dalton transactions.

[7]  P. Zinck,et al.  Coordinative chain transfer polymerization. , 2013, Chemical reviews.

[8]  T. Roisnel,et al.  Old and New C1-Symmetric Group 4 Metallocenes {(R1R2C)-(R2′R3′R6′R7′-Flu)(3-R3-5-R4-C5H2)}ZrCl2: From Highly Isotactic Polypropylenes to Vinyl End-Capped Isotactic-Enriched Oligomers , 2012 .

[9]  G. Bellachioma,et al.  An NMR study on the reaction of substituted dimethyl zirconocenes with dimethylanilinium borate , 2012 .

[10]  W. Kaminsky Discovery of Methylaluminoxane as Cocatalyst for Olefin Polymerization , 2012 .

[11]  Bolin Zhu,et al.  Mechanistic Investigations into the Behavior of a Labeled Zirconocene Polymerization Catalyst , 2012 .

[12]  A. Macchioni,et al.  Low-temperature kinetic NMR studies on the insertion of a single olefin molecule into a Zr-C bond: assessing the counterion-solvent interplay. , 2011, Angewandte Chemie.

[13]  D. Mathis,et al.  Structure, Dynamics, and Polymerization Activity of Zirconocenium Ion Pairs Generated with Boron-C(6)F(5) Compounds and Al(2)R(6) , 2011 .

[14]  Robby A. Petros,et al.  Zirconium-catalyzed carboalumination of α-olefins and chain growth of aluminum alkyls: kinetics and mechanism. , 2011, Journal of the American Chemical Society.

[15]  J. Gladysz,et al.  Chiral-at-ansa-Bridged Group 4 Metallocene Complexes {(R1R2C)-(3,6-tBu2Flu)(3-R3-5-Me-C5H2)}MCl2: Synthesis, Structure, Stereochemistry, and Use in Highly Isoselective Propylene Polymerization , 2011 .

[16]  J. Bercaw,et al.  Cationic alkylaluminum-complexed zirconocene hydrides: NMR-spectroscopic identification, crystallographic structure determination, and interconversion with other zirconocene cations. , 2011, Journal of the American Chemical Society.

[17]  G. Bellachioma,et al.  Synthesis, Characterization, Interionic Structure, and Self-Aggregation Tendency of Zirconaaziridinium Salts Bearing Long Alkyl Chains , 2011 .

[18]  J. Bercaw,et al.  Cationic alkylaluminum-complexed zirconocene hydrides as participants in olefin polymerization catalysis. , 2010, Journal of the American Chemical Society.

[19]  Bolin Zhu,et al.  GPC and ESI-MS analysis of labeled poly(1-hexene): rapid determination of initiated site counts during catalytic alkene polymerization reactions. , 2010, Journal of the American Chemical Society.

[20]  M. Bochmann The Chemistry of Catalyst Activation: The Case of Group 4 Polymerization Catalysts† , 2010 .

[21]  J. Gladysz,et al.  New C1-Symmetric Ph2C-Bridged Multisubstituted ansa-Zirconocenes for Highly Isospecific Propylene Polymerization: Synthetic Approach via Activated Fulvenes† , 2010 .

[22]  I. Císařová,et al.  Pentamethylcyclopentadienylmethyltitanium Silsesquioxanes and Their Zwitterionic Complexes with Tris(pentafluorophenyl)borane , 2009 .

[23]  A. Macchioni,et al.  Activation of a bis(phenoxy-amine) precatalyst for olefin polymerisation: first evidence for an outer sphere ion pair with the methylborate counterion. , 2009, Dalton transactions.

[24]  W. Piers,et al.  Low-Coordinate Organoyttrium Complexes Supported by β-Diketiminato Ligands , 2009 .

[25]  Stephen A. Miller,et al.  Weakly coordinating cations as alternatives to weakly coordinating anions. , 2009, Angewandte Chemie.

[26]  J. Bercaw,et al.  Alkylaluminum-complexed zirconocene hydrides: identification of hydride-bridged species by NMR spectroscopy. , 2008, Journal of the American Chemical Society.

[27]  Joseph A Wright,et al.  Structural Characterization of a Cationic Zirconocene Dimethylaniline Complex and Related Catalytically Relevant Species , 2008 .

[28]  Joseph A. Wright,et al.  Ligand Mobility and Solution Structures of the Metallocenium Ion Pairs [Me2C(Cp)(fluorenyl)MCH2SiMe3+···X−] (M = Zr, Hf; X = MeB(C6F5)3, B(C6F5)4) , 2008 .

[29]  Z. Hou,et al.  Cationic scandium allyl complexes bearing mono(cyclopentadienyl) ligands: synthesis, novel structural variety, and olefin-polymerization catalysis. , 2008, Chemistry, an Asian journal.

[30]  C. Alonso-Moreno,et al.  Evidence for mixed-ion clusters in metallocene catalysts: influence on ligand exchange dynamics and catalyst activity. , 2007, Journal of the American Chemical Society.

[31]  H. Brintzinger,et al.  Modification of methylaluminoxane-activated ansa-zirconocene catalysts with triisobutylaluminum-transformations of reactive cations studied by NMR spectroscopy. , 2007, Chemistry.

[32]  E. P. Talsi,et al.  EPR Identification of Zr(III) Complexes Formed upon Interaction of (2-PhInd)2ZrCl2 and rac-Me2Si(1-Ind)2ZrCl2 with MAO and MMAO , 2007 .

[33]  A. Lebedev,et al.  1H and 13C NMR Studies of Cationic Intermediates Formed upon Activation of “Oscillating” Catalyst (2-PhInd)2ZrCl2 with MAO, MMAO, and AlMe3/[CPh3]+[B(C6F5)4]- , 2007 .

[34]  C. Alonso-Moreno,et al.  Formation and structures of cationic zirconium complexes in ternary systems rac-(SBI)ZrX2/AlBui3/[CPh3][B(C6F5)4(X = Cl, Me) , 2007 .

[35]  Paul D. Bolton,et al.  AlMe3 and ZnMe2 adducts of a titanium imido methyl cation: a combined crystallographic, spectroscopic, and DFT study. , 2006, Journal of the American Chemical Society.

[36]  H. Brintzinger,et al.  Distinct methylalumoxane(MAO)-derived Me-MAO- anions in contact with a zirconocenium cation--a 13C-NMR study. , 2006, Dalton transactions.

[37]  M. Bochmann,et al.  Kinetic and mechanism of alkene polymerization , 2006 .

[38]  C. Janiak,et al.  19F NMR Investigations of the Reaction of B(C6F5)3 with Different Tri(alkyl)aluminum Compounds , 2006 .

[39]  H. Brintzinger,et al.  Methylalumoxane (MAO)-derived MeMAO − anions in zirconocene-based polymerization catalyst systems – a UV-Vis spectroscopic study , 2006 .

[40]  E. P. Talsi,et al.  Activation of rac‐Me2Si(ind)2ZrCl2 by Methylalumoxane Modified by Aluminum Alkyls: An EPR Spin‐Probe, 1H NMR, and Polymerization Study , 2006 .

[41]  U. Thewalt,et al.  Site selective ligand modification and tactic variation in polypropylene chains produced with metallocene catalysts , 2006 .

[42]  W. Youngs,et al.  Propene polymerization using ansa-metallocenium ions: Catalyst deactivation processes during monomer consumption and molecular structures of the products formed , 2005 .

[43]  T. Marks,et al.  B(C6F5)3- vs Al(C6F5)3-derived metallocenium ion pairs. Structural, thermochemical, and structural dynamic divergences. , 2005, Journal of the American Chemical Society.

[44]  Paul D. Bolton,et al.  Well-defined imidotitanium alkyl cations: agostic interactions, migratory insertion vs.[2+2] cycloaddition, and the first structurally authenticated AlMe(3) adduct of any transition metal alkyl cation. , 2005, Chemical communications.

[45]  Brad C. Bailey,et al.  Latent low-coordinate titanium imides supported by a sterically encumbering beta-diketiminate ligand. , 2005, Chemical communications.

[46]  Alceo Macchioni,et al.  Ion pairing in transition-metal organometallic chemistry. , 2005, Chemical reviews.

[47]  A. Macchioni,et al.  Synthesis, Ion Aggregation, Alkyl Bonding Modes, and Dynamics of 14-Electron Metallocenium Ion Pairs [(SBI)MCH2SiMe3+···X-] (M = Zr, Hf): Inner-Sphere (X = MeB(C6F5)3) versus Outer-Sphere (X = B(C6F5)4) Structures and the Implications for “Continuous” or “Intermittent” Alkene Polymerization Mechanis , 2005 .

[48]  E. P. Talsi,et al.  ansa-Titanocene Catalysts for α-Olefin Polymerization. Syntheses, Structures, and Reactions with Methylaluminoxane and Boron-Based Activators , 2005 .

[49]  R. Mülhaupt,et al.  rac-Me2Si(2-Me-4-t-Bu-C5H2)2ZrMe+: An Alkyl Zirconocenium Cation Stabilized by Steric Shielding against Interaction with Ancillary Ligands , 2005 .

[50]  W. Youngs,et al.  Propene Polymerization Using ansa-Metallocenium Ions: Excess Activator Effects on Polymerization Activity and Polymer Microstructure , 2005 .

[51]  D. Damiani,et al.  DFT theoretical studies of UV–Vis spectra and solvent effects in olefin polymerization catalysts , 2005 .

[52]  M. Bochmann Kinetic and mechanistic aspects of metallocene polymerisation catalysts , 2004 .

[53]  Robby A. Petros,et al.  Effectiveness in Catalyzing Carboalumination Can Be Inferred from the Rate of Dissociation of M/Al Dimers , 2004 .

[54]  M. Bochmann,et al.  Activator effects in metallocene-based alkene polymerisations: unexpectedly strong dependence of catalyst activity on trityl concentration , 2004 .

[55]  T. Marks,et al.  Marked counteranion effects on single-site olefin polymerization processes. Correlations of ion pair structure and dynamics with polymerization activity, chain transfer, and syndioselectivity. , 2004, Journal of the American Chemical Society.

[56]  T. Marks,et al.  NOE and PGSE NMR spectroscopic studies of solution structure and aggregation in metallocenium ion-pairs. , 2004, Journal of the American Chemical Society.

[57]  E. P. Talsi,et al.  1H and 13C NMR Spectroscopic Study of Titanium(IV) Species Formed by Activation of Cp2TiCl2 and [(Me4C5)SiMe2NtBu]TiCl2 with Methylaluminoxane (MAO) , 2004 .

[58]  V. Bellia,et al.  Structural features of bridged cyclopentadienyl-fluorenyl based metallocene catalyst: origin of syndiospecificity , 2003 .

[59]  E. Rytter,et al.  1H-, 13C-NMR and ethylene polymerization studies of zirconocene/MAO catalysts: effect of the ligand structure on the formation of active intermediates and polymerization kinetics , 2003 .

[60]  J. Eilertsen,et al.  1H-NMR spectroscopic study of cationic intermediates in solvent and oil constituents of the catalytic systems Cp2ZrMe2/[CPh3][B(C6F5)4] and Cp2ZrMe2/AlMe3/[CPh3][B(C6F5)4] in benzene , 2003 .

[61]  M. Nele,et al.  Counterion effects on propylene polymerization using two-state ansa-metallocene complexes. , 2003, Journal of the American Chemical Society.

[62]  E. Rytter,et al.  1H and 13C NMR Study of the Intermediates Formed by (Cp‐R)2ZrCl2 Activation with MAO and AlMe3/[CPh3][B(C6F5)4]. Correlation of Spectroscopic and Ethene Polymerization Data , 2003 .

[63]  M. Leskelä,et al.  Role of siloxy substituents in the activation of zirconocene polymerization catalysts with methylaluminoxane. A combined spectroscopic and theoretical study , 2003 .

[64]  E. P. Talsi,et al.  1H NMR characterization of intermediates formed by the activation of zirconocenes with methylaluminoxane at high Al/Zr ratios , 2003 .

[65]  C. Landis,et al.  Direct observation of insertion events at rac-(C2H4(1-indenyl)2)Zr(MeB(C6F5)3)-polymeryl intermediates: distinction between continuous and intermittent propagation modes. , 2003, Journal of the American Chemical Society.

[66]  Richard A. Jones,et al.  Novel supramolecular architectures in group 13 perfluoroaryl complexes. Synthesis and structures of [AlMe(C6F5)(mu-Me)]2 and GaMe(C6F5)2. , 2003, Chemical communications.

[67]  H. Brintzinger,et al.  Activation of dimethyl zirconocene by methylaluminoxane (MAO)-size estimate for Me-MAO(-) anions by pulsed field-gradient NMR. , 2002, Journal of the American Chemical Society.

[68]  H. Cramail,et al.  Use of “TMA-depleted” MAO for the activation of zirconocenes in olefin polymerization , 2002 .

[69]  M. Leskelä,et al.  Activation of Racemic Ethylene-Bridged Bis(indenyl)-Type Siloxy-Substituted Zirconocenes with Methylaluminoxane. A Combined UV/vis Spectroscopic and ab Initio Hartree−Fock Study , 2002 .

[70]  H. Brintzinger,et al.  Displacement of H3CB(C6F5)3- Anions from Zirconocene Methyl Cations by Neutral Ligand Molecules: Equilibria, Kinetics, and Mechanisms , 2002 .

[71]  H. Cramail,et al.  Influence of X ligand nature in the activation process of racEt(Ind)2ZrX2 by methylaluminoxane , 2001 .

[72]  H. Cramail,et al.  Reactivity of Metallocene Catalysts for Olefin Polymerization: Influence of Activator Nature and Structure , 2001 .

[73]  U. Thewalt,et al.  Preparation and crystal structures of the complexes (η5-C5H3TMS–CMe2–η5-C13H8)MCl2 and [3,6-ditButC13H6–SiMe2–NtBu]MCl2 (M=Hf, Zr or Ti): mechanistic aspects of the catalytic formation of a isotactic–syndiotactic stereoblock-type polypropylene , 2001 .

[74]  H. Brintzinger,et al.  Anion exchange in alkyl-zirconocene borate ion pairs : are solvated alkyl-zirconocene cations relevant intermediates? , 2001 .

[75]  M. Thornton-Pett,et al.  Synthesis, structures, and reactivity of weakly coordinating anions with delocalized borate structure: the assessment of anion effects in metallocene polymerization catalysts. , 2001, Journal of the American Chemical Society.

[76]  David R. Wilson,et al.  "Double activation" of constrained geometry and ansa-metallocene group 4 metal dialkyls: synthesis, structure, and olefin polymerization study of mono- and dicationic aluminate complexes. , 2001, Journal of the American Chemical Society.

[77]  H. Knuuttila,et al.  Electronic transitions of racemic ethylene -bridged bis(indenyl)-type siloxy substituted zirconocene dichlorides. A combined UV/VIS spectroscopic and theoretical study , 2001 .

[78]  J. Goodman,et al.  Some calculations for organic chemists: boiling point variation, Boltzmann factors and the Eyring equation , 2000 .

[79]  W. M. Davis,et al.  Preparation and Activation of Complexes of the Type [((mesityl)NCH2CH2)2NX]ZrMe2 (X = H, Me) with [Ph3C][B(C6F5)4] or [PhNMe2H][B(C6F5)4] , 2000 .

[80]  K. Abboud,et al.  Ligand Exchange and Alkyl Abstraction Involving (Perfluoroaryl)boranes and -alanes with Aluminum and Gallium Alkyls , 2000 .

[81]  A. Razavi Metallocene catalysts technology and environment , 2000 .

[82]  T. Marks,et al.  Cocatalysts for metal-catalyzed olefin polymerization: activators, activation processes, and structure-activity relationships. , 2000, Chemical reviews.

[83]  E. P. Talsi,et al.  Mechanism of dimethylzirconocene activation with methylaluminoxane: NMR monitoring of intermediates at high Al/Zr ratios , 2000 .

[84]  W. M. Davis,et al.  Zirconium Complexes That Contain a Diamido O-Donor Ligand with a Restricted Geometry , 1999 .

[85]  H. Cramail,et al.  Activation of iPr(CpFluo)ZrCl2 by methylaluminoxane, 3. Kinetic investigation of the syndiospecific hex‐1‐ene polymerization in hydrocarbon and chlorinated media , 1999 .

[86]  H. Cramail,et al.  Activation of iPr(CpFluo)ZrCl2 by methylaluminoxane, 4. UV/visible spectroscopic study in hydrocarbon and chlorinated media , 1999 .

[87]  M. Sarsfield,et al.  Reaction of AlR3 with [CPh3][B(C6F5)4]: Facile Degradation of [B(C6F5)4]- by Transient “[AlR2]+” , 1998 .

[88]  R. Waymouth,et al.  Enantio- and Diastereoselective Catalytic Carboalumination of 1-Alkenes and α,ω-Dienes with Cationic Zirconocenes: Scope and Mechanism , 1998 .

[89]  H. Cramail,et al.  U.V./visible spectroscopic study of the rac‐Et(Ind)2ZrCl2/MAO olefin polymerization catalytic system, 1. Investigation in toluene , 1998 .

[90]  T. Marks,et al.  Sterically encumbered (perfluoroaryl) borane and aluminate cocatalysts for tuning cation - Anion ion pair structure and reactivity in metallocene polymerization processes. A synthetic, structural, and polymerization study , 1998 .

[91]  Tobin J. Marks,et al.  Highly Electrophilic Olefin Polymerization Catalysts. Quantitative Reaction Coordinates for Fluoroarylborane/Alumoxane Methide Abstraction and Ion-Pair Reorganization in Group 4 Metallocene and “Constrained Geometry” Catalysts , 1998 .

[92]  H. Brintzinger,et al.  Displacement of weakly coordinating anions from zirconocene alkyl cations by trialkyl phosphines: A model for olefin coordination in homogeneous Ziegler–Natta catalysis , 1998 .

[93]  Andrew D. Horton and Controlled Alkene and Alkyne Insertion Reactivity of a Cationic Zirconium Complex Stabilized by an Open Diamide Ligand , 1997 .

[94]  M. C. Sacchi,et al.  Dimethylzirconocene-methylaluminoxane catalyst for olefin polymerization : NMR study of reaction equilibria , 1997 .

[95]  L. Jia,et al.  Cationic Metallocene Polymerization Catalysts Based on Tetrakis(pentafluorophenyl)borate and Its Derivatives. Probing the Limits of Anion “Noncoordination” via a Synthetic, Solution Dynamic, Structural, and Catalytic Olefin Polymerization Study , 1997 .

[96]  T. Marks,et al.  Organo-Lewis Acids As Cocatalysts in Cationic Metallocene Polymerization Catalysis. Unusual Characteristics of Sterically Encumbered Tris(perfluorobiphenyl)borane , 1996 .

[97]  H. Brintzinger,et al.  Binuclear zirconocene cations with μ-CH3-bridges in homogeneous Ziegler-Natta catalyst systems , 1996 .

[98]  A. Horton Direct Observation of β-Methyl Elimination in Cationic Neopentyl Complexes: Ligand Effects on the Reversible Elimination of Isobutene , 1996 .

[99]  J. L. Petersen,et al.  Synthesis, Structures, and Reactivity of (R6-acen)ZrR'2 and (R6-acen)Zr(R')+ Complexes (R = H, F; R' = CH2CMe3, CH2Ph) , 1995 .

[100]  Tobin J. Marks,et al.  Cationic zirconocene olefin polymerization catalysts based on the organo-Lewis acid tris(pentafluorophenyl)borane. A synthetic, structural, solution dynamic, and polymerization catalytic study , 1994 .

[101]  M. Bochmann,et al.  Monomer-Dimer-Gleichgewichte in homo- und heterodinuclearen kationischen Alkylzirconiumkomplexen: zur Rolle von Alkylaluminiumverbindungen bei der Stabilisierung katalytisch aktiver Zentren† , 1994 .

[102]  M. Hursthouse,et al.  Synthesis of Base-Free Cationic Zirconium Methyl and Benzyl Complexes. The Crystal and Molecular Structure of {C5H3(SiMe3)2-1,3}2ZrMe(.mu.-Me)B(C6F5)3 , 1994 .

[103]  B. Bachmann,et al.  The Influence of Aromatic Substituents on the Polymerization Behavior of Bridged Zirconocene Catalysts , 1994 .

[104]  D. Cam,et al.  Concerning the reaction of zirconocene dichloride and methylalumoxane: Homogeneous Ziegler-Natta catalytic system for olefin polymerization , 1992 .

[105]  Tobin J. Marks,et al.  Group 4 metallocene-alumoxane olefin polymerization catalysts. CPMAS-NMR spectroscopic observation of cation-like zirconocene alkyls , 1992 .

[106]  S. Buchwald,et al.  Syntheses of [ethylene-1,2-bis(.eta.5-4,5,6,7-tetrahydro-1-indenyl)]zirconium and -hafnium hydride complexes. Improved syntheses of the corresponding dichlorides , 1991 .

[107]  Tobin J. Marks,et al.  CATION-LIKE HOMOGENEOUS OLEFIN POLYMERIZATION CATALYSTS BASED UPON ZIRCONOCENE ALKYLS AND TRIS(PENTAFLUOROPHENYL)BORANE , 1991 .

[108]  T. Marks,et al.  Models for organometallic molecule-support complexes. Very large counterion modulation of cationic actinide alkyl reactivity , 1991 .