Linguistic pitch analysis using functional principal component mixed effect models

Fundamental frequency (F0, broadly 'pitch') is an integral part of spoken human language; however, a comprehensive quantitative model for F0 can be a challenge to formulate owing to the large number of effects and interactions between effects that lie behind the human voice's production of F0, and the very nature of the data being a contour rather than a point. The paper presents a semiparametric functional response model for F0 by incorporating linear mixed effects models through the functional principal component scores. This model is applied to the problem of modelling F0 in the tone language Qiang, a language in which relative pitch information is part of each word's dictionary entry. Copyright (c) 2010 Royal Statistical Society.

[1]  Yi Xu,et al.  Principles of Tone Research , 2006 .

[2]  Phil Rose,et al.  Considerations in the normalisation of the fundamental frequency of linguistic tone , 1987, Speech Commun..

[3]  P. Boersma ACCURATE SHORT-TERM ANALYSIS OF THE FUNDAMENTAL FREQUENCY AND THE HARMONICS-TO-NOISE RATIO OF A SAMPLED SOUND , 1993 .

[4]  Ching X. Xu,et al.  Effects of consonant aspiration on Mandarin tones , 2001, Journal of the International Phonetic Association.

[5]  Karl J. Friston,et al.  Variance Components , 2003 .

[6]  Valter Ciocca,et al.  Perceptual correlates of Cantonese tones , 2007, J. Phonetics.

[7]  D. Holt,et al.  The Effect of Survey Design on Regression Analysis , 1980 .

[8]  T. Auton Applied Functional Data Analysis: Methods and Case Studies , 2004 .

[9]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[10]  Wentao Gu,et al.  The command-response model for the generation of F/sub 0/ contours of Cantonese utterances , 2004, Proceedings 7th International Conference on Signal Processing, 2004. Proceedings. ICSP '04. 2004..

[11]  Haiyan Wang Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models Edited by Faraway J. J. , 2006 .

[12]  Randy J. LaPolla,et al.  A Grammar of Qiang: With Annotated Texts and Glossary , 2003 .

[13]  Wensheng Guo Functional Mixed Effects Models , 2002 .

[14]  Jeffrey S. Morris,et al.  Wavelet‐based functional mixed models , 2006, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[15]  Yi Xu,et al.  Effects of tone and focus on the formation and alignment of f0contours , 1999 .

[16]  Brian S. Caffo,et al.  Multilevel functional principal component analysis , 2009 .

[17]  Keith A. Johnson,et al.  Acoustic and Auditory Phonetics , 1997, Phonetica.

[18]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[19]  Hansjörg Mixdorff,et al.  A novel approach to the fully automatic extraction of Fujisaki model parameters , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[20]  P. Hall,et al.  Properties of principal component methods for functional and longitudinal data analysis , 2006, math/0608022.

[21]  Bernard Bloch,et al.  The Syllabic Phonemes of English , 1941 .

[22]  Jane-ling Wang,et al.  Functional linear regression analysis for longitudinal data , 2005, math/0603132.

[23]  P. Vieu,et al.  Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics) , 2006 .

[24]  D. J. Davidson,et al.  Functional Mixed-Effect Models for Electrophysiological Responses , 2009, Neurophysiology.

[25]  V. Carey,et al.  Mixed-Effects Models in S and S-Plus , 2001 .

[26]  Keith E. Muller,et al.  Extending the Box–Cox transformation to the linear mixed model , 2006 .

[27]  C. Skinner,et al.  The effect of sample design on principal component analysis , 1986 .

[28]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[29]  David Crystal,et al.  A dictionary of linguistics and phonetics , 1997 .

[30]  C. Shih,et al.  A Declination Model of Mandarin Chinese , 2000 .

[31]  Jane-Ling Wang,et al.  Functional quasi‐likelihood regression models with smooth random effects , 2003 .

[32]  E. A. Sylvestre,et al.  Principal modes of variation for processes with continuous sample curves , 1986 .

[33]  Austin F. Frank,et al.  Analyzing linguistic data: a practical introduction to statistics using R , 2010 .

[34]  Keikichi Hirose,et al.  Analysis of voice fundamental frequency contours of continuing and terminating prosodic phrases in four swiss German dialects , 2009, INTERSPEECH.

[35]  Janet Fletcher,et al.  Patterns of rising and falling in Australian English , 2006 .

[36]  B. Silverman,et al.  Functional Data Analysis , 1997 .

[37]  R. Baayen,et al.  Mixed-effects modeling with crossed random effects for subjects and items , 2008 .

[38]  B. Silverman,et al.  Estimating the mean and covariance structure nonparametrically when the data are curves , 1991 .

[39]  D. Bates,et al.  Mixed-Effects Models in S and S-PLUS , 2001 .

[40]  Z. Q. John Lu,et al.  Nonparametric Functional Data Analysis: Theory And Practice , 2007, Technometrics.

[41]  Jonathan P. Evans Contact-Induced Tonogenesis in Southern Qiang * , 2001 .

[42]  J. Faraway Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models , 2005 .

[43]  Keikichi Hirose,et al.  Analysis of F0 contours of Cantonese utterances based on the command-response model , 2004, INTERSPEECH.

[44]  R. van Bezooijen,et al.  Sociocultural Aspects of Pitch Differences between Japanese and Dutch Women , 1995, Language and speech.

[45]  James Stanford A sociotonetic analysis of Sui dialect contact , 2008, Language Variation and Change.

[46]  Van Bezooijen,et al.  Sociocultural Aspects of Pitch Differences between Japanese and Dutch Women , 1995 .

[47]  Keikichi Hirose,et al.  Analysis of voice fundamental frequency contours for declarative sentences of Japanese , 1984 .

[48]  Keith A. Johnson Quantitative Methods In Linguistics , 2008 .