Constrained control of switching systems: a positive invariant approach

This paper presents conditions for the stabilization of switching discrete-time linear systems with constrained control by using a positive invariance approach. A state feedback control law is used to construct the stabilizing controller. A numerical example is presented to illustrate the technique.

[1]  Y. Ijiri Fundamental Queries in Aggregation Theory , 1971 .

[2]  E. De Santis,et al.  Can linear stabilizability analysis be generalized to switching systems ? , 2004 .

[3]  A. Benzaouia,et al.  The resolution of equation XA+XBX=HX and the pole assignment problem , 1994, IEEE Trans. Autom. Control..

[4]  Abdellah Benzaouia,et al.  Stabilization of linear systems with saturation: a Sylvester equation approach , 2004, IMA J. Math. Control. Inf..

[5]  A. Benzaouia,et al.  STABILITY OF CONTINUOUS-TIME LINEAR SYSTEMS WITH MARKOVIAN JUMPING PARAMETERS AND CONSTRAINED CONTROL , 2002 .

[6]  M. Branicky Multiple Lyapunov functions and other analysis tools for switched and hybrid systems , 1998, IEEE Trans. Autom. Control..

[7]  John Lygeros,et al.  Controllers for reachability specifications for hybrid systems , 1999, Autom..

[8]  Maria Domenica Di Benedetto,et al.  Stabilizability based State Space Reductions for Hybrid Systems , 2006, ADHS.

[9]  R. Decarlo,et al.  Perspectives and results on the stability and stabilizability of hybrid systems , 2000, Proceedings of the IEEE.

[10]  Maria Domenica Di Benedetto,et al.  Computation of maximal safe sets for switching systems , 2004, IEEE Transactions on Automatic Control.

[11]  Jamal Daafouz,et al.  Stability analysis and control synthesis for switched systems: a switched Lyapunov function approach , 2002, IEEE Trans. Autom. Control..

[12]  C. Burgat,et al.  Regulator problem for linear discrete-time systems with non-symmetrical constrained control , 1988 .

[13]  Franco Blanchini,et al.  Set invariance in control , 1999, Autom..

[14]  Abdellah Benzaouia,et al.  Stability of discrete-time linear systems with Markovian jumping parameters and constrained control , 2002, IEEE Trans. Autom. Control..

[15]  O. Akhrif,et al.  Stability and control synthesis of switched systems subject to actuator saturation , 2004, Proceedings of the 2004 American Control Conference.

[16]  Daniel Liberzon,et al.  Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.

[17]  A. Benzaouia The regulator problem for linear discrete-time systems with nonsymmetrical constrained control , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[18]  Elena De Santis,et al.  Quantized control via robust controlled invariance , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[19]  A. Morse Supervisory control of families of linear set-point controllers , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[20]  Hai Lin,et al.  Switched Linear Systems: Control and Design , 2006, IEEE Transactions on Automatic Control.