How to avoid premature decay of your macromolecular crystal: a quick soak for long life.

[1]  On the influence of the incident photon energy on the radiation damage in crystalline biological samples. , 2005, Journal of synchrotron radiation.

[2]  A. Howard,et al.  Experiments testing the abatement of radiation damage in D-xylose isomerase crystals with cryogenic helium. , 2002, Journal of synchrotron radiation.

[3]  R. Sarma,et al.  Structure studies on styrene-treated immunoglobulin crystals. , 1975, Journal of molecular biology.

[4]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[5]  S J Wodak,et al.  SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. , 1999, Acta crystallographica. Section D, Biological crystallography.

[6]  J L Sussman,et al.  Specific chemical and structural damage to proteins produced by synchrotron radiation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[7]  R. Ravelli,et al.  The 'fingerprint' that X-rays can leave on structures. , 2000, Structure.

[8]  S. Harrison,et al.  How does radiation damage in protein crystals depend on X-ray dose? , 2003, Structure.

[9]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[10]  Sean McSweeney,et al.  Zero-dose extrapolation as part of macromolecular synchrotron data reduction. , 2003, Acta crystallographica. Section D, Biological crystallography.

[11]  R. Sarma,et al.  New method for extending the diffraction pattern from protein crystals and preventing their radiation damage , 1974, Nature.

[12]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[13]  Kay Diederichs,et al.  Some aspects of quantitative analysis and correction of radiation damage. , 2006, Acta crystallographica. Section D, Biological crystallography.

[14]  E. Garman,et al.  Physical and chemical considerations of damage induced in protein crystals by synchrotron radiation: a radiation chemical perspective. , 2002, Journal of synchrotron radiation.

[15]  E. Garman,et al.  Investigation of possible free-radical scavengers and metrics for radiation damage in protein cryocrystallography. , 2002, Journal of synchrotron radiation.

[16]  J. Hajdu,et al.  The catalytic pathway of horseradish peroxidase at high resolution , 2002, Nature.

[17]  Metal binding to porcine pancreatic elastase: calcium or not calcium. , 2002, Acta crystallographica. Section D, Biological crystallography.

[18]  M. Weiss,et al.  Crystallization, structure solution and refinement of hen egg-white lysozyme at pH 8.0 in the presence of MPD. , 2000, Acta crystallographica. Section D, Biological crystallography.

[19]  Richard Henderson,et al.  Cryo-protection of protein crystals against radiation damage in electron and X-ray diffraction , 1990, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[20]  E. Weckert,et al.  Investigation of radiation-dose-induced changes in organic light-atom crystals by accurate d-spacing measurements. , 2002, Journal of synchrotron radiation.

[21]  Richard Giegé,et al.  Crystallization in the presence of glycerol displaces water molecules in the structure of thaumatin. , 2002, Acta crystallographica. Section D, Biological crystallography.