Targeting miR‐155 restores abnormal microglia and attenuates disease in SOD1 mice

To investigate miR‐155 in the SOD1 mouse model and human sporadic and familial amyotrophic lateral sclerosis (ALS).

[1]  Brian L. West,et al.  Colony-Stimulating Factor 1 Receptor Signaling Is Necessary for Microglia Viability, Unmasking a Microglia Progenitor Cell in the Adult Brain , 2014, Neuron.

[2]  Marco Prinz,et al.  Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease , 2014, Nature Reviews Neuroscience.

[3]  P. Popovich,et al.  Microglia Induce Motor Neuron Death via the Classical NF-κB Pathway in Amyotrophic Lateral Sclerosis , 2014, Neuron.

[4]  S. Gygi,et al.  Identification of a Unique TGF-β Dependent Molecular and Functional Signature in Microglia , 2013, Nature Neuroscience.

[5]  S. Ludwin,et al.  miR‐155 as a multiple sclerosis–relevant regulator of myeloid cell polarization , 2013, Annals of neurology.

[6]  J. Pothof,et al.  MicroRNA-Mediated Down-Regulation of M-CSF Receptor Contributes to Maturation of Mouse Monocyte-Derived Dendritic Cells , 2013, Front. Immunol..

[7]  Timothy A. Miller,et al.  Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice. , 2013, Human molecular genetics.

[8]  P. Gressens,et al.  Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro , 2013, Brain, Behavior, and Immunity.

[9]  R. Myers,et al.  A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. , 2013, Cell reports.

[10]  N. D'Ambrosi,et al.  Ablation of P2X7 receptor exacerbates gliosis and motoneuron death in the SOD1-G93A mouse model of amyotrophic lateral sclerosis. , 2013, Human molecular genetics.

[11]  S. Kauppinen,et al.  Treatment of HCV infection by targeting microRNA. , 2013, The New England journal of medicine.

[12]  F. Heppner,et al.  Functional Impairment of Microglia Coincides with Beta-Amyloid Deposition in Mice with Alzheimer-Like Pathology , 2013, PloS one.

[13]  A Suzumura,et al.  Minocycline selectively inhibits M1 polarization of microglia , 2013, Cell Death and Disease.

[14]  Y. Li,et al.  Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis , 2013, Nature Neuroscience.

[15]  J. Sayre,et al.  Tocilizumab attenuates inflammation in ALS patients through inhibition of IL6 receptor signaling. , 2012, American journal of neurodegenerative disease.

[16]  Hugo M. Botelho,et al.  S100A6 Amyloid Fibril Formation Is Calcium-modulated and Enhances Superoxide Dismutase-1 (SOD1) Aggregation* , 2012, The Journal of Biological Chemistry.

[17]  H. Weiner,et al.  Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. , 2012, The Journal of clinical investigation.

[18]  S. Appel,et al.  Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS , 2012, Experimental Neurology.

[19]  E. Hoffman,et al.  Deletion of galectin-3 exacerbates microglial activation and accelerates disease progression and demise in a SOD1G93A mouse model of amyotrophic lateral sclerosis , 2012, Brain and behavior.

[20]  A. la Sala,et al.  Immunoregulation through extracellular nucleotides. , 2012, Blood.

[21]  Kui Li,et al.  OLFML3 Expression is Decreased during Prenatal Muscle Development and Regulated by MicroRNA-155 in Pigs , 2012, International journal of biological sciences.

[22]  James C. Cronk,et al.  Wild type microglia arrest pathology in a mouse model of Rett syndrome , 2012, Nature.

[23]  S. Petri,et al.  Deregulation of TDP-43 in amyotrophic lateral sclerosis triggers nuclear factor κB–mediated pathogenic pathways , 2011, The Journal of experimental medicine.

[24]  H. Weiner,et al.  Silencing MicroRNA-155 Ameliorates Experimental Autoimmune Encephalomyelitis , 2011, The Journal of Immunology.

[25]  J. R. Maximino,et al.  Early motor and electrophysiological changes in transgenic mouse model of amyotrophic lateral sclerosis and gender differences on clinical outcome , 2011, Brain Research.

[26]  H. Weiner,et al.  MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α–PU.1 pathway , 2011, Nature Medicine.

[27]  Edward L. Huttlin,et al.  A Tissue-Specific Atlas of Mouse Protein Phosphorylation and Expression , 2010, Cell.

[28]  K. Kodys,et al.  Up-regulation of MicroRNA-155 in Macrophages Contributes to Increased Tumor Necrosis Factor α (TNFα) Production via Increased mRNA Half-life in Alcoholic Liver Disease* , 2010, The Journal of Biological Chemistry.

[29]  F. Ginhoux,et al.  Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages , 2010, Science.

[30]  Ryan M. O’Connell,et al.  MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. , 2010, Immunity.

[31]  R. Martinez-Nunez,et al.  MicroRNA-155 Targets SMAD2 and Modulates the Response of Macrophages to Transforming Growth Factor-β* , 2010, The Journal of Biological Chemistry.

[32]  G. Landreth,et al.  The role of microglia in amyloid clearance from the AD brain , 2010, Journal of Neural Transmission.

[33]  Jie Zhu,et al.  The Immune-Modulatory Role of Apolipoprotein E with Emphasis on Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis , 2010, Clinical & developmental immunology.

[34]  S. Perrin,et al.  From transcriptome analysis to therapeutic anti-CD40L treatment in the SOD1 model of amyotrophic lateral sclerosis , 2010, Nature Genetics.

[35]  R. Aguiar,et al.  Targeting of SMAD5 links microRNA-155 to the TGF-β pathway and lymphomagenesis , 2010, Proceedings of the National Academy of Sciences.

[36]  S. Kauppinen,et al.  Therapeutic Silencing of MicroRNA-122 in Primates with Chronic Hepatitis C Virus Infection , 2010, Science.

[37]  Stephen F. Barnes The Aging Human Brain , 2010 .

[38]  Tom Maniatis,et al.  Activation of innate and humoral immunity in the peripheral nervous system of ALS transgenic mice , 2009, Proceedings of the National Academy of Sciences.

[39]  H. Lassmann,et al.  MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. , 2009, Brain : a journal of neurology.

[40]  Manuel A. S. Santos,et al.  MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells , 2009, Proceedings of the National Academy of Sciences.

[41]  Hana Lee,et al.  Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. , 2009, Immunity.

[42]  S. Appel,et al.  CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS , 2008, Proceedings of the National Academy of Sciences.

[43]  A. P. Robinson,et al.  Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/immune responses , 2008, Proceedings of the National Academy of Sciences.

[44]  H. Gendelman,et al.  Adaptive Immune Neuroprotection in G93A-SOD1 Amyotrophic Lateral Sclerosis Mice , 2008, PloS one.

[45]  Aadel A. Chaudhuri,et al.  Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder , 2008, The Journal of experimental medicine.

[46]  M. Endres,et al.  The ectonucleotidase cd39/ENTPDase1 modulates purinergic‐mediated microglial migration , 2008, Glia.

[47]  Anton J. Enright,et al.  microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. , 2007, Immunity.

[48]  G. Lemke,et al.  TAM Receptors Are Pleiotropic Inhibitors of the Innate Immune Response , 2007, Cell.

[49]  Hynek Wichterle,et al.  Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons , 2007, Nature Neuroscience.

[50]  N. Rajewsky,et al.  Regulation of the Germinal Center Response by MicroRNA-155 , 2007, Science.

[51]  David Baltimore,et al.  MicroRNA-155 is induced during the macrophage inflammatory response , 2007, Proceedings of the National Academy of Sciences.

[52]  W. Gan,et al.  The P2Y12 receptor regulates microglial activation by extracellular nucleotides , 2006, Nature Neuroscience.

[53]  S. Mckercher,et al.  Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis , 2006, Proceedings of the National Academy of Sciences.

[54]  G. Kollias,et al.  Onset and Progression in Inherited ALS Determined by Motor Neurons and Microglia , 2006, Science.

[55]  T. Heiman-Patterson,et al.  Background and gender effects on survival in the TgN(SOD1-G93A)1Gur mouse model of ALS , 2005, Journal of the Neurological Sciences.

[56]  T. Siddique,et al.  Presence of dendritic cells, MCP‐1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue , 2004, Annals of neurology.

[57]  D. Sparks,et al.  Dystrophic microglia in the aging human brain , 2004, Glia.

[58]  P. Mcgeer,et al.  Inflammatory processes in amyotrophic lateral sclerosis , 2002, Muscle & nerve.

[59]  C. Heizmann,et al.  S100A6 Overexpression within Astrocytes Associated with Impaired Axons from Both ALS Mouse Model and Human Patients , 2002, Journal of neuropathology and experimental neurology.

[60]  F. Di Virgilio,et al.  Assignment of ecto‐nucleoside triphosphate diphosphohydrolase‐1/cd39 expression to microglia and vasculature of the brain , 2000, The European journal of neuroscience.

[61]  Hans Lassmann,et al.  Monocyte/macrophage differentiation in early multiple sclerosis lesions , 1995, Annals of neurology.

[62]  J. Newcombe,et al.  Characterization and distribution of phagocytic macrophages in multiple sclerosis plaques , 1993, Neuropathology and applied neurobiology.