An area-efficient TDM NoC supporting reconfiguration for mode changes

This paper presents an area-efficient time-division-multiplexing (TDM) network-on-chip (NoC) intended for use in a multicore platform for hard real-time systems. In such a platform, a mode change at the application level requires the tear-down and set-up of some virtual circuits without affecting the virtual circuits that persist across the mode change. Our NoC supports such reconfiguration in a very efficient way, using the same resources that are used for transmission of regular data. We evaluate the presented NoC in terms of worst-case reconfiguration time, hardware cost, and maximum operating frequency. The results show that the hardware cost for an FPGA implementation of our architecture is a factor of 2.2 to 3.9 times smaller than other NoCs with reconfiguration functionalities, and that the worst-case time for a reconfiguration is shorter or comparable to those NoCs.

[1]  Kees G. W. Goossens,et al.  The aethereal network on chip after ten years: Goals, evolution, lessons, and future , 2010, Design Automation Conference.

[2]  Alan Burns,et al.  Real-Time Systems and Programming Languages - Ada, Real-Time Java and C / Real-Time POSIX, Fourth Edition , 2009, International computer science series.

[3]  Kees G. W. Goossens,et al.  Argo: A Real-Time Network-on-Chip Architecture With an Efficient GALS Implementation , 2016, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[4]  Wei Zhang,et al.  A NoC Traffic Suite Based on Real Applications , 2011, 2011 IEEE Computer Society Annual Symposium on VLSI.

[5]  Kees G. W. Goossens,et al.  An efficient on-chip NI offering guaranteed services, shared-memory abstraction, and flexible network configuration , 2005, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[6]  Luca Benini,et al.  Network Interface Architecture and Design Issues , 2006 .

[7]  Kees G. W. Goossens,et al.  dAElite: A TDM NoC Supporting QoS, Multicast, and Fast Connection Set-Up , 2014, IEEE Transactions on Computers.

[8]  Luca Benini,et al.  P2012: Building an ecosystem for a scalable, modular and high-efficiency embedded computing accelerator , 2012, 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[9]  Rasmus Bo Sorensen,et al.  A Metaheuristic Scheduler for Time Division Multiplexed Networks-on-Chip , 2014, 2014 IEEE 17th International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing.

[10]  Martin Schoeberl,et al.  An area-efficient network interface for a TDM-based Network-on-Chip , 2013, 2013 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[11]  Christian Bernard,et al.  A 477mW NoC-based digital baseband for MIMO 4G SDR , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).