Beyond knockouts: cre resources for conditional mutagenesis

[1]  Steve D. M. Brown,et al.  The mammalian gene function resource: the international knockout mouse consortium , 2012, Mammalian Genome.

[2]  Allan R. Jones,et al.  A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing , 2012, Nature Neuroscience.

[3]  Eiichiro Nakamura,et al.  Cre‐mediated recombination can induce apoptosis in vivo by activating the p53 DNA damage‐induced pathway , 2012, Genesis.

[4]  V. Taylor,et al.  A Modified RMCE-Compatible Rosa26 Locus for the Expression of Transgenes from Exogenous Promoters , 2012, PloS one.

[5]  Judith A. Blake,et al.  The Mouse Genome Database (MGD): comprehensive resource for genetics and genomics of the laboratory mouse , 2011, Nucleic Acids Res..

[6]  S. Nelson,et al.  A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex , 2011, Neuron.

[7]  Harry Hochheiser,et al.  The FaceBase Consortium: a comprehensive program to facilitate craniofacial research. , 2011, Developmental biology.

[8]  H. Park,et al.  High Cleavage Efficiency of a 2A Peptide Derived from Porcine Teschovirus-1 in Human Cell Lines, Zebrafish and Mice , 2011, PloS one.

[9]  Liqun Luo,et al.  Site-specific integrase-mediated transgenesis in mice via pronuclear injection , 2011, Proceedings of the National Academy of Sciences.

[10]  D. Smedley,et al.  Cre recombinase resources for conditional mouse mutagenesis. , 2011, Methods.

[11]  K. Woltjen,et al.  PhiC31 integrase facilitates genetic approaches combining multiple recombinases. , 2011, Methods.

[12]  S. Murray Mouse resources for craniofacial research , 2011, Genesis.

[13]  Judith A. Blake,et al.  The Mouse Genome Database (MGD): premier model organism resource for mammalian genomics and genetics , 2010, Nucleic Acids Res..

[14]  M. Solimena,et al.  Tamoxifen-Independent Recombination in the RIP-CreER Mouse , 2010, PloS one.

[15]  Shiaoching Gong,et al.  Rapid bacterial artificial chromosome modification for large-scale mouse transgenesis , 2010, Nature Protocols.

[16]  Steven J. M. Jones,et al.  A regulatory toolbox of MiniPromoters to drive selective expression in the brain , 2010, Proceedings of the National Academy of Sciences.

[17]  B. Wicksteed,et al.  Conditional Gene Targeting in Mouse Pancreatic β-Cells , 2010, Diabetes.

[18]  R. Lovell-Badge,et al.  Nestin-Cre Mice Are Affected by Hypopituitarism, Which Is Not Due to Significant Activity of the Transgene in the Pituitary Gland , 2010, PloS one.

[19]  J. Mills,et al.  Inducible activation of Cre recombinase in adult mice causes gastric epithelial atrophy, metaplasia, and regenerative changes in the absence of "floxed" alleles. , 2010, American journal of physiology. Gastrointestinal and liver physiology.

[20]  Allan R. Jones,et al.  A robust and high-throughput Cre reporting and characterization system for the whole mouse brain , 2009, Nature Neuroscience.

[21]  B. Wicksteed,et al.  Conditional Gene Targeting in Mouse Pancreatic-Cells Analysis of Ectopic Cre Transgene Expression in the Brain , 2010 .

[22]  Russell S. Ray,et al.  Mapping cell fate and function using recombinase-based intersectional strategies. , 2010, Methods in enzymology.

[23]  Ulrike Winkler,et al.  Split-CreERT2: Temporal Control of DNA Recombination Mediated by Split-Cre Protein Fragment Complementation , 2009, PloS one.

[24]  A. Kashina,et al.  Conditional Tek Promoter-Driven Deletion of Arginyltransferase in the Germ Line Causes Defects in Gametogenesis and Early Embryonic Lethality in Mice , 2009, PloS one.

[25]  Frank Buchholz,et al.  Dre recombinase, like Cre, is a highly efficient site-specific recombinase in E. coli, mammalian cells and mice , 2009, Disease Models & Mechanisms.

[26]  Akira Niwa,et al.  Direct Hematological Toxicity and Illegitimate Chromosomal Recombination Caused by the Systemic Activation of CreERT21 , 2009, The Journal of Immunology.

[27]  E. Simpson,et al.  Next generation tools for high-throughput promoter and expression analysis employing single-copy knock-ins at the Hprt1 locus. , 2009, Genomics.

[28]  R. Sprengel,et al.  Split-Cre Complementation Indicates Coincident Activity of Different Genes In Vivo , 2009, PloS one.

[29]  A. Nagy,et al.  Creation and use of a cre recombinase transgenic database. , 2009, Methods in molecular biology.

[30]  Damian Smedley,et al.  BioMart – biological queries made easy , 2009, BMC Genomics.

[31]  H. Takebayashi,et al.  Tamoxifen modulates apoptosis in multiple modes of action in CreER mice , 2008, Genesis.

[32]  Z. Werb,et al.  Genetic mosaic analysis reveals FGF receptor 2 function in terminal end buds during mammary gland branching morphogenesis. , 2008, Developmental biology.

[33]  Michael W. Miller,et al.  Foxg1 haploinsufficiency reduces the population of cortical intermediate progenitor cells: effect of increased p21 expression. , 2008, Cerebral cortex.

[34]  D. Silversides,et al.  Novel pre‐ and post‐gastrulation expression of Gata4 within cells of the inner cell mass and migratory neural crest cells , 2008, Developmental dynamics : an official publication of the American Association of Anatomists.

[35]  C. Kuan,et al.  Promiscuous recombination of LoxP alleles during gametogenesis in cornea Cre driver mice , 2008, Molecular vision.

[36]  G. Fishell,et al.  Mosaic Removal of Hedgehog Signaling in the Adult SVZ Reveals That the Residual Wild-Type Stem Cells Have a Limited Capacity for Self-Renewal , 2007, The Journal of Neuroscience.

[37]  H. Cremer,et al.  Conditional Transgenesis Using Dimerizable Cre (DiCre) , 2007, PloS one.

[38]  V. Papaioannou,et al.  Cre activity causes widespread apoptosis and lethal anemia during embryonic development , 2007, Genesis.

[39]  Y. Lan,et al.  A unique mouse strain expressing Cre recombinase for tissue‐specific analysis of gene function in palate and kidney development , 2007, Genesis.

[40]  Charles R. Gerfen,et al.  Targeting Cre Recombinase to Specific Neuron Populations with Bacterial Artificial Chromosome Constructs , 2007, The Journal of Neuroscience.

[41]  M. Nitert,et al.  Rat insulin promoter 2-Cre recombinase mice bred onto a pure C57BL/6J background exhibit unaltered glucose tolerance. , 2007, The Journal of endocrinology.

[42]  E. Ahrens,et al.  Disruption of Foxg1 expression by knock-in of Cre recombinase: Effects on the development of the mouse telencephalon , 2007, Neuroscience.

[43]  K. Matthaei Genetically manipulated mice: a powerful tool with unsuspected caveats , 2007, The Journal of physiology.

[44]  K. Rajewsky,et al.  Vagaries of conditional gene targeting , 2007, Nature Immunology.

[45]  D. Castrillon,et al.  Generation of a germ cell‐specific mouse transgenic Cre line, Vasa‐Cre , 2007, Genesis.

[46]  T. Jacks,et al.  Restoration of p53 function leads to tumour regression in vivo , 2007, Nature.

[47]  C. S. Raymond,et al.  High-Efficiency FLP and ΦC31 Site-Specific Recombination in Mammalian Cells , 2007, PloS one.

[48]  L. Goldstein,et al.  Analysis of kinesin-2 function in photoreceptor cells using synchronous Cre-loxP knockout of Kif3a with RHO-Cre. , 2006, Investigative ophthalmology & visual science.

[49]  H. Moore,et al.  FoxG1 haploinsufficiency results in impaired neurogenesis in the postnatal hippocampus and contextual memory deficits , 2006, Hippocampus.

[50]  A. Vercelli,et al.  High Levels of Cre Expression in Neuronal Progenitors Cause Defects in Brain Development Leading to Microencephaly and Hydrocephaly , 2006, The Journal of Neuroscience.

[51]  R. Kucherlapati,et al.  Inactivation of conditional Rb by Villin-Cre leads to aggressive tumors outside the gastrointestinal tract. , 2006, Cancer research.

[52]  Ji-yeon Lee,et al.  RIP-Cre Revisited, Evidence for Impairments of Pancreatic β-Cell Function* , 2006, Journal of Biological Chemistry.

[53]  Andrea L. Szymczak,et al.  Development of 2A peptide-based strategies in the design of multicistronic vectors , 2005, Expert opinion on biological therapy.

[54]  R. Coffey,et al.  Keratin 19 gene drives Cre recombinase expression throughout the early postimplantation mouse embryo , 2005, Genesis.

[55]  J. Whitsett,et al.  Conditional and inducible transgene expression in mice through the combinatorial use of Cre-mediated recombination and tetracycline induction , 2005, Nucleic acids research.

[56]  L. Créancier,et al.  Use and comparison of different internal ribosomal entry sites (IRES) in tricistronic retroviral vectors , 2004, BMC Biotechnology.

[57]  Smaroula Dilioglou,et al.  Correction of multi-gene deficiency in vivo using a single 'self-cleaving' 2A peptide–based retroviral vector , 2004, Nature Biotechnology.

[58]  K. Willecke,et al.  Spontaneous ectopic recombination in cell‐type‐specific Cre mice removes loxP‐flanked marker cassettes in vivo , 2004, Genesis.

[59]  C. Branda,et al.  Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. , 2004, Developmental cell.

[60]  Richard Kemp,et al.  Elimination of background recombination: somatic induction of Cre by combined transcriptional regulation and hormone binding affinity. , 2004, Nucleic acids research.

[61]  A. Enjalbert,et al.  Regulation of Cre recombinase by ligand-induced complementation of inactive fragments. , 2003, Nucleic acids research.

[62]  Jeremy Nathans,et al.  A Noninvasive Genetic/Pharmacologic Strategy for Visualizing Cell Morphology and Clonal Relationships in the Mouse , 2003, The Journal of Neuroscience.

[63]  D. Ow,et al.  Site-specific cassette exchange and germline transmission with mouse ES cells expressing φC31 integrase , 2003, Nature Biotechnology.

[64]  K. Rajewsky,et al.  Stringent doxycycline dependent control of CRE recombinase in vivo. , 2002, Nucleic acids research.

[65]  F. Rossi,et al.  Latest developments and in vivo use of the Tet system: ex vivo and in vivo delivery of tetracycline-regulated genes. , 2002, Current opinion in biotechnology.

[66]  H. Hauser,et al.  Composition and arrangement of genes define the strength of IRES-driven translation in bicistronic mRNAs. , 2001, Nucleic acids research.

[67]  P Chambon,et al.  Site- and time-specific gene targeting in the mouse. , 2001, Methods.

[68]  S. Mcconnell,et al.  Targeting of cre to the Foxg1 (BF-1) locus mediates loxP recombination in the telencephalon and other developing head structures. , 2000, Developmental biology.

[69]  C. Lobe,et al.  Targeted insertion of Cre recombinase into the TNAP gene: Excision in primordial germ cells , 2000, Genesis.

[70]  P Chambon,et al.  Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. , 1999, Nucleic acids research.

[71]  Philippe Soriano Generalized lacZ expression with the ROSA26 Cre reporter strain , 1999, Nature Genetics.

[72]  P Chambon,et al.  Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. , 1997, Biochemical and biophysical research communications.

[73]  L A Herzenberg,et al.  Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to widespread expression of beta-galactosidase in mouse embryos and hematopoietic cells. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[74]  P. Gruss,et al.  Temporal control of the Cre recombinase in transgenic mice by a tetracycline responsive promoter. , 1996, Nucleic acids research.

[75]  S. Dymecki Flp recombinase promotes site-specific DNA recombination in embryonic stem cells and transgenic mice. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[76]  K. Herrup,et al.  Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. , 1995, Science.