HBO1 is required for the maintenance of leukaemia stem cells

[1]  Phillip G. Montgomery,et al.  Defining a Cancer Dependency Map , 2017, Cell.

[2]  Eric S. Lander,et al.  Gene Essentiality Profiling Reveals Gene Networks and Synthetic Lethal Interactions with Oncogenic Ras , 2017, Cell.

[3]  Katharine L. Diehl,et al.  ISWI chromatin remodellers sense nucleosome modifications to determine substrate preference , 2017, Nature.

[4]  G. Boucher,et al.  The transcriptomic landscape and directed chemical interrogation of MLL-rearranged acute myeloid leukemias , 2015, Nature Genetics.

[5]  Nghi Nguyen,et al.  Inhibitors of histone acetyltransferases KAT6A/B induce senescence and arrest tumour growth , 2018, Nature.

[6]  R. Morgan,et al.  The role of HOX genes in normal hematopoiesis and acute leukemia , 2013, Leukemia.

[7]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[8]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[9]  W. Kabsch XDS , 2010, Acta crystallographica. Section D, Biological crystallography.

[10]  D. Grimwade,et al.  Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance. , 2016, Blood.

[11]  David A. Orlando,et al.  Quantitative ChIP-Seq normalization reveals global modulation of the epigenome. , 2014, Cell reports.

[12]  M. Dugas,et al.  MYST2 acetyltransferase expression and Histone H4 Lysine acetylation are suppressed in AML. , 2015, Experimental hematology.

[13]  T. Golub,et al.  Transformation from committed progenitor to leukaemia stem cell initiated by MLL–AF9 , 2006, Nature.

[14]  J. Kinney,et al.  Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains , 2015, Nature Biotechnology.

[15]  Julie M Sheridan,et al.  edgeR: a versatile tool for the analysis of shRNA-seq and CRISPR-Cas9 genetic screens , 2014, F1000Research.

[16]  Nicholas K. Sauter,et al.  Diffraction-geometry refinement in the DIALS framework , 2016, Acta crystallographica. Section D, Structural biology.

[17]  M. Dawson,et al.  The cancer epigenome: Concepts, challenges, and therapeutic opportunities , 2017, Science.

[18]  Fidel Ramírez,et al.  deepTools2: a next generation web server for deep-sequencing data analysis , 2016, Nucleic Acids Res..

[19]  Jianping Ding,et al.  Structural and mechanistic insights into regulation of HBO1 histone acetyltransferase activity by BRPF2 , 2017, Nucleic acids research.

[20]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[21]  T. Milne,et al.  Epigenetic control of gene expression in leukemogenesis: Cooperation between wild type MLL and MLL fusion proteins , 2014, Molecular & cellular oncology.

[22]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[23]  A. Voss,et al.  HBO1 Is Required for H3K14 Acetylation and Normal Transcriptional Activity during Embryonic Development , 2010, Molecular and Cellular Biology.

[24]  Giulio Superti-Furga,et al.  MLL-fusion-driven leukemia requires SETD2 to safeguard genomic integrity , 2018, Nature Communications.

[25]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[26]  B. Göttgens,et al.  Epigenetic silencing by the HUSH complex mediates position-effect variegation in human cells , 2015, Science.

[27]  Mark A. Dawson,et al.  BET inhibitor resistance emerges from leukaemia stem cells , 2015, Nature.

[28]  R. Majeti,et al.  Biology and relevance of human acute myeloid leukemia stem cells. , 2017, Blood.

[29]  C. Allis,et al.  Extraction, purification and analysis of histones , 2007, Nature Protocols.

[30]  Linden J. Gearing,et al.  Jarid2 regulates hematopoietic stem cell function by acting with polycomb repressive complex 2. , 2015, Blood.

[31]  Ole Winther,et al.  BloodSpot: a database of gene expression profiles and transcriptional programs for healthy and malignant haematopoiesis , 2015, Nucleic Acids Res..

[32]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[33]  P. Zwart,et al.  Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.

[34]  O. Dovey,et al.  A powerful molecular synergy between mutant Nucleophosmin and Flt3-ITD drives acute myeloid leukemia in mice , 2013, Leukemia.

[35]  G. Smyth,et al.  Polycomb Repressive Complex 2 (PRC2) Restricts Hematopoietic Stem Cell Activity , 2008, PLoS biology.

[36]  S. Pennings,et al.  Sas3 and Ada2(Gcn5)-dependent histone H3 acetylation is required for transcription elongation at the de-repressed FLO1 gene , 2017, Nucleic acids research.

[37]  Julio Saez-Rodriguez,et al.  A CRISPR Dropout Screen Identifies Genetic Vulnerabilities and Therapeutic Targets in Acute Myeloid Leukemia , 2016, Cell reports.

[38]  A. Voss,et al.  Moz and retinoic acid coordinately regulate H3K9 acetylation, Hox gene expression, and segment identity. , 2009, Developmental cell.

[39]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[40]  Chao Xu,et al.  Solution structure of human Brg1 bromodomain and its specific binding to acetylated histone tails. , 2007, Biochemistry.

[41]  Benjamin J. Raphael,et al.  Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. , 2013, The New England journal of medicine.

[42]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[43]  T. Hung,et al.  HBO1 HAT complexes target chromatin throughout gene coding regions via multiple PHD finger interactions with histone H3 tail. , 2009, Molecular cell.

[44]  J. Brickman,et al.  Time-Resolved Analysis Reveals Rapid Dynamics and Broad Scope of the CBP/p300 Acetylome , 2018, Cell.

[45]  Toru Okamoto,et al.  HoxA9 regulated Bcl-2 expression mediates survival of myeloid progenitors and the severity of HoxA9-dependent leukemia , 2013, Oncotarget.

[46]  Matthew E. Ritchie,et al.  Setdb1-mediated H3K9 methylation is enriched on the inactive X and plays a role in its epigenetic silencing , 2016, Epigenetics & Chromatin.

[47]  A. Hoelz,et al.  Histone-binding of DPF2 mediates its repressive role in myeloid differentiation , 2017, Proceedings of the National Academy of Sciences.

[48]  Philip R. Evans,et al.  How good are my data and what is the resolution? , 2013, Acta crystallographica. Section D, Biological crystallography.

[49]  S. Lowe,et al.  RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia , 2011, Nature.

[50]  Andrew J. Bannister,et al.  Functional interdependence of BRD4 and DOT1L in MLL leukemia , 2016, Nature Structural &Molecular Biology.

[51]  B. Doble,et al.  The ground state of embryonic stem cell self-renewal , 2008, Nature.

[52]  Song Tan,et al.  ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. , 2006, Molecular cell.

[53]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[54]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[55]  Di Wu,et al.  ROAST: rotation gene set tests for complex microarray experiments , 2010, Bioinform..

[56]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .