Subgraphs of random graphs with specified degrees

If a graph is chosen uniformly at random from all the graphs with a given degree sequence, what can be said about its subgraphs? The same can be asked of bipartite graphs, equivalently 0-1 matrices. These questions have been studied by many people. In this paper we provide a partial survey of the eld, with emphasis on two general techniques: the method of switchings and the multidimensional saddle-point method.

[1]  Alexander I. Barvinok,et al.  The number of graphs and a random graph with a given degree sequence , 2010, Random Struct. Algorithms.

[2]  Brendan D. McKay,et al.  Subgraphs of Dense Random Graphs with Specified Degrees , 2010, Combinatorics, Probability and Computing.

[3]  Benny Sudakov,et al.  Regular induced subgraphs of a random Graph , 2011, Random Struct. Algorithms.

[4]  Jeanette C. McLeod Asymptotic Enumeration ofk-Edge-Coloredk-Regular Graphs , 2009, SIAM J. Discret. Math..

[5]  Brendan D. McKay,et al.  Subgraphs of Random k-Edge-Coloured k-Regular Graphs , 2009, Comb. Probab. Comput..

[6]  Catherine S. Greenhill,et al.  Random dense bipartite graphs and directed graphs with specified degrees , 2007, Random Struct. Algorithms.

[7]  S. Janson The Probability That a Random Multigraph is Simple , 2006, Combinatorics, Probability and Computing.

[8]  Michael Krivelevich,et al.  Random regular graphs of non-constant degree: Concentration of the chromatic number , 2005, Discret. Math..

[9]  Nicholas C. Wormald,et al.  Distribution of subgraphs of random regular graphs , 2008, Random Struct. Algorithms.

[10]  Catherine S. Greenhill,et al.  Asymptotic enumeration of dense 0-1 matrices with specified line sums , 2006, J. Comb. Theory, Ser. A.

[11]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[12]  Brendan D. McKay,et al.  Short Cycles in Random Regular Graphs , 2004, Electron. J. Comb..

[13]  Nicholas C. Wormald,et al.  Asymptotic normality determined by high moments, and submap counts of random maps , 2004 .

[14]  Alan M. Frieze,et al.  Random Regular Graphs of Non-Constant Degree: Connectivity and Hamiltonicity , 2002, Combinatorics, Probability and Computing.

[15]  Benny Sudakov,et al.  Random regular graphs of high degree , 2001, Random Struct. Algorithms.

[16]  Brendan D. McKay,et al.  Asymptotic enumeration of tournaments with a given score sequence containing a specified digraph , 2000, Random Struct. Algorithms.

[17]  Hans Garmo,et al.  The asymptotic distribution of long cycles in random regular graphs , 1999, Random Struct. Algorithms.

[18]  N. Wormald Surveys in Combinatorics, 1999: Models of Random Regular Graphs , 1999 .

[19]  Nicholas C. Wormald,et al.  Almost All Cubic Graphs Are Hamiltonian , 1992, Random Struct. Algorithms.

[20]  Brendan D. McKay,et al.  Asymptotic enumeration by degree sequence of graphs with degreeso(n1/2) , 1991, Comb..

[21]  Brendan D. McKay,et al.  The asymptotic numbers of regular tournaments, Eulerian digraphs and Eulerian oriented graphs , 1990, Comb..

[22]  Brendan D. McKay,et al.  Asymptotic Enumeration by Degree Sequence of Graphs of High Degree , 1990, Eur. J. Comb..

[23]  Brendan D. McKay,et al.  Uniform Generation of Random Regular Graphs of Moderate Degree , 1990, J. Algorithms.

[24]  Brendan D. McKay,et al.  Asymptotic enumeration of Latin rectangles , 1990, J. Comb. Theory, Ser. B.

[25]  Andrzej Rucinski,et al.  Random Graphs , 2018, Foundations of Data Science.

[26]  Brendan D. McKay,et al.  The number of matchings in random regular graphs and bipartite graphs , 1986, J. Comb. Theory, Ser. B.

[27]  Béla Bollobás,et al.  Almost all Regular Graphs are Hamiltonian , 1983, European journal of combinatorics (Print).

[28]  Brendan D. McKay,et al.  Spanning Trees in Regular Graphs , 1983, Eur. J. Comb..

[29]  Nicholas C. Wormald,et al.  The asymptotic distribution of short cycles in random regular graphs , 1981, J. Comb. Theory, Ser. B.

[30]  Béla Bollobás,et al.  A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..