Numerical simulation and experimental investigation of the elastocaloric cooling effect in sputter-deposited TiNiCuCo thin films

[1]  A. Schütze,et al.  Elastocaloric cooling processes: The influence of material strain and strain rate on efficiency and temperature span , 2016 .

[2]  Stefan Seelecke,et al.  Scientific test setup for investigation of shape memory alloy based elastocaloric cooling processes , 2015 .

[3]  Eckhard Quandt,et al.  Ultralow-fatigue shape memory alloy films , 2015, Science.

[4]  M. Kohl,et al.  Local Evolution of the Elastocaloric Effect in TiNi-Based Films , 2015, Shape Memory and Superelasticity.

[5]  R. Drautz,et al.  On the effect of alloy composition on martensite start temperatures and latent heats in Ni–Ti-based shape memory alloys , 2015 .

[6]  M. Kohl,et al.  Evolution of temperature profiles in TiNi films for elastocaloric cooling , 2014 .

[7]  A. Schütze,et al.  Experimental Investigation and Numerical Simulation of the Mechanical and Thermal Behavior of a Superelastic Shape Memory Alloy Beam During Bending , 2014 .

[8]  Stefan Seelecke,et al.  Experimental Investigation on the Efficiency of a Control Dependent NiTi-Based Cooling Process , 2014 .

[9]  A. Maynadier,et al.  Thermomechanical modelling of a NiTi SMA sample submitted to displacement-controlled tensile test , 2014 .

[10]  B. Krevet,et al.  Elastocaloric cooling using shape memory alloy films , 2013 .

[11]  A. Schütze,et al.  Cooling Efficiencies of a NiTi-Based Cooling Process , 2013 .

[12]  Eckhard Quandt,et al.  High cyclic stability of the elastocaloric effect in sputtered TiNiCu shape memory films , 2012 .

[13]  M. Wuttig,et al.  Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires , 2012 .

[14]  Stefan Seelecke,et al.  Numerical and experimental analysis of inhomogeneities in SMA wires induced by thermal boundary conditions , 2012, Continuum Mechanics and Thermodynamics.

[15]  H. Emmerich,et al.  Caloric Effects in Ferroic Materials: New Concepts for Cooling , 2012 .

[16]  José Higino Correia,et al.  Digitally-controlled array of solid-state microcoolers for use in surgery , 2011 .

[17]  L. Molari,et al.  A macroscale, phase-field model for shape memory alloys with non-isothermal effects: influence of strain-rate and environmental conditions on the mechanical response , 2011, 1107.5998.

[18]  Y. Chemisky,et al.  Constitutive model for shape memory alloys including phase transformation, martensitic reorientation and twins accommodation , 2011 .

[19]  Mohamed Haboussi,et al.  Modelling of localization and propagation of phase transformation in superelastic SMA by a gradient nonlocal approach , 2011 .

[20]  Marcus L. Young,et al.  Phase volume fractions and strain measurements in an ultrafine-grained NiTi shape-memory alloy during tensile loading , 2010 .

[21]  V. Levitas,et al.  Interface Propagation and Microstructure Evolution in Phase Field Models of Stress-Induced Martensitic Phase Transformations , 2010 .

[22]  Stefan Seelecke,et al.  FE analysis of SMA-based bio-inspired bone–joint system , 2009 .

[23]  Oliver Kastner,et al.  Implementation of the Müller-Achenbach-Seelecke Model for Shape Memory Alloys in ABAQUS , 2009, Journal of Materials Engineering and Performance.

[24]  Stefan Seelecke,et al.  A coupled thermomechanical model for shape memory alloys—From single crystal to polycrystal , 2008 .

[25]  John A. Shaw,et al.  Thermodynamics of Shape Memory Alloy Wire: Modeling, Experiments, and Application , 2006 .

[26]  C. Somsen,et al.  Investigation of the phase evolution in a super-elastic NiTi shape memory alloy (50.7 at.%Ni) under extensional load with synchrotron radiation , 2004 .

[27]  Rolf Lammering,et al.  Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy: micro and macromechanical investigations via in situ optical microscopy , 2004 .

[28]  T. Pirling,et al.  In‐situ diffraction investigation of superelastic NiTi shape memory alloys under mechanical stress with neutrons and with synchrotron radiation , 2004 .

[29]  J. El-Ali,et al.  Simulation and experimental validation of a SU-8 based PCR thermocycler chip with integrated heaters and temperature sensor , 2004 .

[30]  Stefan Seelecke,et al.  Modeling the dynamic behavior of shape memory alloys , 2002 .

[31]  T. Tadaki,et al.  Shape Memory Alloys , 2002 .

[32]  Stefan Seelecke,et al.  Thermodynamic aspects of shape memory alloys , 2001 .

[33]  J. Shaw,et al.  Thermomechanical aspects of NiTi , 1995 .

[34]  L. Brinson One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation with Non-Constant Material Functions and Redefined Martensite Internal Variable , 1993 .

[35]  M. Achenbach,et al.  A MODEL FOR SHAPE MEMORY , 1982 .

[36]  Stefan Seelecke,et al.  A unified framework for modeling hysteresis in ferroic materials , 2006 .

[37]  Stefan Seelecke,et al.  Shape memory alloy actuators in smart structures: Modeling and simulation , 2004 .

[38]  D. Lagoudas,et al.  A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy , 1996 .

[39]  James G. Boyd,et al.  A thermodynamical constitutive model for shape memory materials. Part II. The SMA composite material , 1996 .

[40]  M. Achenbach A model for an alloy with shape memory , 1989 .