Mutual Information Regularized Identity-aware Facial ExpressionRecognition in Compressed Video

[1]  Boyang Li,et al.  Video Emotion Recognition with Transferred Deep Feature Encodings , 2016, ICMR.

[2]  Christopher Joseph Pal,et al.  EmoNets: Multimodal deep learning approaches for emotion recognition in video , 2015, Journal on Multimodal User Interfaces.

[3]  Matti Pietikäinen,et al.  Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Dong-Yan Huang,et al.  Audio-visual emotion recognition using deep transfer learning and multiple temporal models , 2017, ICMI.

[5]  Byung Cheol Song,et al.  Visual Scene-aware Hybrid Neural Network Architecture for Video-based Facial Expression Recognition , 2019, 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019).

[6]  Aapo Hyvärinen,et al.  Nonlinear independent component analysis: Existence and uniqueness results , 1999, Neural Networks.

[7]  Jean-Philippe Thiran,et al.  G2-VER: Geometry Guided Model Ensemble for Video-based Facial Expression Recognition , 2019, 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019).

[8]  Ralph Linsker,et al.  Self-organization in a perceptual network , 1988, Computer.

[9]  Lior Wolf,et al.  A Two-Step Disentanglement Method , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[10]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[11]  Alice Caplier,et al.  Deep Learning for Spatio-Temporal Modeling of Dynamic Spontaneous Emotions , 2018, IEEE Transactions on Affective Computing.

[12]  Yu Liu,et al.  Exploring Disentangled Feature Representation Beyond Face Identification , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[13]  Yong Man Ro,et al.  Multi-Objective Based Spatio-Temporal Feature Representation Learning Robust to Expression Intensity Variations for Facial Expression Recognition , 2019, IEEE Transactions on Affective Computing.

[14]  Jane You,et al.  Adaptive Deep Metric Learning for Identity-Aware Facial Expression Recognition , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[15]  A. Young,et al.  Understanding the recognition of facial identity and facial expression , 2005, Nature Reviews Neuroscience.

[16]  Junmo Kim,et al.  Joint Fine-Tuning in Deep Neural Networks for Facial Expression Recognition , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[17]  Maja Pantic,et al.  Web-based database for facial expression analysis , 2005, 2005 IEEE International Conference on Multimedia and Expo.

[18]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Ian J. Goodfellow,et al.  NIPS 2016 Tutorial: Generative Adversarial Networks , 2016, ArXiv.

[20]  Victor O. K. Li,et al.  Video-based Emotion Recognition Using Deeply-Supervised Neural Networks , 2018, ICMI.

[21]  Lijun Yin,et al.  Static and dynamic 3D facial expression recognition: A comprehensive survey , 2012, Image Vis. Comput..

[22]  Aaron C. Courville,et al.  MINE: Mutual Information Neural Estimation , 2018, ArXiv.

[23]  Anastasis A. Sofokleous,et al.  Review: H.264 and MPEG-4 Video Compression: Video Coding for Next-generation Multimedia , 2005, Comput. J..

[24]  Shan Li,et al.  Deep Facial Expression Recognition: A Survey , 2018, IEEE Transactions on Affective Computing.

[25]  Minghao Wang,et al.  Multi-Feature Based Emotion Recognition for Video Clips , 2018, ICMI.

[26]  Xiaofeng Liu,et al.  Image2Audio: Facilitating Semi-supervised Audio Emotion Recognition with Facial Expression Image , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[27]  Xiaofeng Liu,et al.  Subtype-aware Unsupervised Domain Adaptation for Medical Diagnosis , 2021, AAAI.

[28]  Bowen Zhang,et al.  Real-Time Action Recognition with Enhanced Motion Vector CNNs , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  Tardi Tjahjadi,et al.  A dynamic framework based on local Zernike moment and motion history image for facial expression recognition , 2017, Pattern Recognit..

[30]  Yann LeCun,et al.  Disentangling factors of variation in deep representation using adversarial training , 2016, NIPS.

[31]  Iain E. G. Richardson,et al.  H.264 and MPEG-4 Video Compression: Video Coding for Next-Generation Multimedia , 2003 .

[32]  Jian Zhang,et al.  Learning deep facial expression features from image and optical flow sequences using 3D CNN , 2018, The Visual Computer.

[33]  Nazil Perveen,et al.  Spontaneous Expression Recognition Using Universal Attribute Model , 2018, IEEE Transactions on Image Processing.

[34]  Manabu Hashimoto,et al.  Facial-Expression Recognition from Video using Enhanced Convolutional LSTM , 2019, 2019 Digital Image Computing: Techniques and Applications (DICTA).

[35]  Cordelia Schmid,et al.  A Spatio-Temporal Descriptor Based on 3D-Gradients , 2008, BMVC.

[36]  Shiguang Shan,et al.  Learning Expressionlets on Spatio-temporal Manifold for Dynamic Facial Expression Recognition , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[37]  Noisy Student Training using Body Language Dataset Improves Facial Expression Recognition , 2020, ECCV Workshops.

[38]  Ping Hu,et al.  Learning supervised scoring ensemble for emotion recognition in the wild , 2017, ICMI.

[39]  James Philbin,et al.  FaceNet: A unified embedding for face recognition and clustering , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[40]  C.-C. Jay Kuo,et al.  Mutual Information Regularized Feature-level Frankenstein for Discriminative Recognition. , 2021, IEEE transactions on pattern analysis and machine intelligence.

[41]  Didier Le Gall,et al.  MPEG: a video compression standard for multimedia applications , 1991, CACM.

[42]  Zhidong Deng,et al.  Fast Object Detection in Compressed Video , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[43]  Cheng Lu,et al.  Multiple Spatio-temporal Feature Learning for Video-based Emotion Recognition in the Wild , 2018, ICMI.

[44]  Yong Man Ro,et al.  Mode Variational LSTM Robust to Unseen Modes of Variation: Application to Facial Expression Recognition , 2018, AAAI.

[45]  Ping Hu,et al.  HoloNet: towards robust emotion recognition in the wild , 2016, ICMI.

[46]  Tamás D. Gedeon,et al.  Emotion Recognition In The Wild Challenge 2014: Baseline, Data and Protocol , 2014, ICMI.

[47]  Zhiyuan Li,et al.  Island Loss for Learning Discriminative Features in Facial Expression Recognition , 2017, 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018).

[48]  Jane You,et al.  Hard negative generation for identity-disentangled facial expression recognition , 2019, Pattern Recognit..

[49]  Luís B. Almeida,et al.  MISEP -- Linear and Nonlinear ICA Based on Mutual Information , 2003, J. Mach. Learn. Res..

[50]  Takeo Kanade,et al.  The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops.

[51]  Stefan Wermter,et al.  Developing crossmodal expression recognition based on a deep neural model , 2016, Adapt. Behav..

[52]  Liam Paninski,et al.  Estimation of Entropy and Mutual Information , 2003, Neural Computation.

[53]  Azadeh Mansouri,et al.  Action Recognition in Compressed Domain Using Residual Information , 2019, 2019 4th International Conference on Pattern Recognition and Image Analysis (IPRIA).

[54]  Abhinav Gupta,et al.  Non-local Neural Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[55]  Yong Du,et al.  Facial Expression Recognition Based on Deep Evolutional Spatial-Temporal Networks , 2017, IEEE Transactions on Image Processing.

[56]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[57]  Yuanliu Liu,et al.  Video-based emotion recognition using CNN-RNN and C3D hybrid networks , 2016, ICMI.

[58]  Pietro Liò,et al.  Deep Graph Infomax , 2018, ICLR.

[59]  Haifeng Hu,et al.  Deep multi-path convolutional neural network joint with salient region attention for facial expression recognition , 2019, Pattern Recognit..

[60]  Yoshua Bengio,et al.  Learning Independent Features with Adversarial Nets for Non-linear ICA , 2017, 1710.05050.

[61]  Frédéric Jurie,et al.  Temporal multimodal fusion for video emotion classification in the wild , 2017, ICMI.

[62]  Graham Neubig,et al.  Controllable Invariance through Adversarial Feature Learning , 2017, NIPS.

[63]  Alexander J. Smola,et al.  Compressed Video Action Recognition , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[64]  Charles E. Hughes,et al.  All-In-One: Facial Expression Transfer, Editing and Recognition Using A Single Network , 2019, ArXiv.

[65]  Manisha Verma,et al.  LBVCNN: Local Binary Volume Convolutional Neural Network for Facial Expression Recognition From Image Sequences , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[66]  Yuta Nakashima,et al.  Facial Expression Recognition with Skip-Connection to Leverage Low-Level Features , 2019, 2019 IEEE International Conference on Image Processing (ICIP).

[67]  Maja Pantic,et al.  Action unit detection using sparse appearance descriptors in space-time video volumes , 2011, Face and Gesture 2011.

[68]  Oriol Vinyals,et al.  Representation Learning with Contrastive Predictive Coding , 2018, ArXiv.

[69]  Ira Kemelmacher-Shlizerman,et al.  The MegaFace Benchmark: 1 Million Faces for Recognition at Scale , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[70]  S. Shankar Sastry,et al.  Compressed Domain Real-time Action Recognition , 2006, 2006 IEEE Workshop on Multimedia Signal Processing.

[71]  Jesse Hoey,et al.  From individual to group-level emotion recognition: EmotiW 5.0 , 2017, ICMI.

[72]  Shiguang Shan,et al.  Deeply Learning Deformable Facial Action Parts Model for Dynamic Expression Analysis , 2014, ACCV.

[73]  Jane You,et al.  Feature-Level Frankenstein: Eliminating Variations for Discriminative Recognition , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[74]  Xiaofeng Liu,et al.  Identity-aware Facial Expression Recognition in Compressed Video , 2021, 2020 25th International Conference on Pattern Recognition (ICPR).

[75]  Yong Man Ro,et al.  On-the-Fly Facial Expression Prediction using LSTM Encoded Appearance-Suppressed Dynamics , 2019 .

[76]  Seungryong Kim,et al.  Multi-Modal Recurrent Attention Networks for Facial Expression Recognition , 2020, IEEE Transactions on Image Processing.

[77]  Lorenzo Torresani,et al.  Learning Spatiotemporal Features with 3D Convolutional Networks , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[78]  Ping Liu,et al.  Identity-Aware Convolutional Neural Network for Facial Expression Recognition , 2017, 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017).

[79]  Chao Yang,et al.  Adaptive metric learning with deep neural networks for video-based facial expression recognition , 2018 .

[80]  Zhiyuan Li,et al.  Identity-Free Facial Expression Recognition Using Conditional Generative Adversarial Network , 2019, 2021 IEEE International Conference on Image Processing (ICIP).

[81]  Xudong Lin,et al.  DMC-Net: Generating Discriminative Motion Cues for Fast Compressed Video Action Recognition , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[82]  Guodong Chen,et al.  A Deep Spatial and Temporal Aggregation Framework for Video-Based Facial Expression Recognition , 2019, IEEE Access.

[83]  Haibin Yan,et al.  Collaborative discriminative multi-metric learning for facial expression recognition in video , 2018, Pattern Recognit..

[84]  Yu Qiao,et al.  Frame Attention Networks for Facial Expression Recognition in Videos , 2019, 2019 IEEE International Conference on Image Processing (ICIP).

[85]  Yueli Cui,et al.  Learning Affective Video Features for Facial Expression Recognition via Hybrid Deep Learning , 2019, IEEE Access.

[86]  Takeo Kanade,et al.  Comprehensive database for facial expression analysis , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[87]  Min Hu,et al.  Video facial emotion recognition based on local enhanced motion history image and CNN-CTSLSTM networks , 2019, J. Vis. Commun. Image Represent..

[88]  Bowen Zhang,et al.  Real-Time Action Recognition With Deeply Transferred Motion Vector CNNs , 2018, IEEE Transactions on Image Processing.

[89]  Yoshua Bengio,et al.  Learning deep representations by mutual information estimation and maximization , 2018, ICLR.

[90]  Gaurav Sharma,et al.  LOMo: Latent Ordinal Model for Facial Analysis in Videos , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[91]  Zhenhua Guo,et al.  Permutation-Invariant Feature Restructuring for Correlation-Aware Image Set-Based Recognition , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[92]  Trevor Darrell,et al.  Long-term recurrent convolutional networks for visual recognition and description , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[93]  Mimic The Raw Domain: Accelerating Action Recognition in the Compressed Domain , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[94]  J. Kinney,et al.  Equitability, mutual information, and the maximal information coefficient , 2013, Proceedings of the National Academy of Sciences.

[95]  Pascal Vincent,et al.  Disentangling Factors of Variation for Facial Expression Recognition , 2012, ECCV.

[96]  Kaiqi Huang,et al.  Multi angle optimal pattern-based deep learning for automatic facial expression recognition , 2017, Pattern Recognit. Lett..

[97]  Mubarak Shah,et al.  A 3-dimensional sift descriptor and its application to action recognition , 2007, ACM Multimedia.