Partitioned estimation algorithms, I: Nonlinear estimation
暂无分享,去创建一个
[1] Jayant G. Deshpande,et al. Optimal adaptive control: A non-linear separation theorem† , 1972 .
[2] Walerian Kipiniak,et al. Optimal Estimation, Identification, and Control , 1964 .
[3] L. Schwartz,et al. A valid mathematical model for approximate nonlinear minimal-variance filtering , 1968 .
[4] James S. Meditch,et al. Stochastic Optimal Linear Estimation and Control , 1969 .
[5] R. E. Kalman,et al. A New Approach to Linear Filtering and Prediction Problems , 2002 .
[6] Y. Ho. On the stochastic approximation method and optimal filtering theory , 1963 .
[7] E. Tse,et al. A direct derivation of the optimal linear filter using the maximum principle , 1967, IEEE Transactions on Automatic Control.
[8] M. Athans,et al. The design of suboptimal linear time-varying systems , 1968 .
[9] Jayant G. Deshpande,et al. Identification and Control of Linear Stochastic Systems Using Spline Functions. , 1973 .
[10] Thomas Kailath,et al. Some new algorithms for recursive estimation in constant linear systems , 1973, IEEE Trans. Inf. Theory.
[11] D. Lainiotis,et al. A Unified Approach to Detection, Estimation, and System Identification. , 1972 .
[12] Subrata Kumar Das,et al. ANALYSIS OF TIME-VARYING NETWORKS , 1966 .
[13] W. Wonham. Some applications of stochastic difierential equations to optimal nonlinear ltering , 1964 .
[14] Demetrios G. Lainiotis. Sequential structure and parameter-adaptive pattern recognition-I: Supervised learning , 1970, IEEE Trans. Inf. Theory.
[15] J. S. Meditch. Formal algorithms for continuous-time non-linear filtering and smoothing† , 1970 .
[16] M. Morf,et al. Some new algorithms for recursive estimation in constant, linear, discrete-time systems , 1974 .
[17] Daniel L. Alspach,et al. Gaussian sum approximations for nonlinear filtering , 1970 .
[18] R. E. Kalman,et al. New Results in Linear Filtering and Prediction Theory , 1961 .
[19] Harold W. Sorenson,et al. On the development of practical nonlinear filters , 1974, Inf. Sci..
[20] H. Sorenson,et al. Recursive bayesian estimation using gaussian sums , 1971 .
[21] Thomas Kailath,et al. Development of new estimation algorithms by innovations analysis and shift-invariance properties (Corresp.) , 1974, IEEE Trans. Inf. Theory.
[22] T. Duncan. PROBABILITY DENSITIES FOR DIFFUSION PROCESSES WITH APPLICATIONS TO NONLINEAR FILTERING THEORY AND DETECTION THEORY , 1967 .
[23] D. Lainiotis,et al. Simplified parameter quantization procedure for adaptive estimation , 1969 .
[24] K.K. Biswas,et al. An Approach to Fixed-Point Smoothing Problems , 1972, IEEE Transactions on Aerospace and Electronic Systems.
[25] Jayant G. Deshpande,et al. Parameter estimation using splines , 1974, Inf. Sci..
[26] D. Lainiotis,et al. Optimal state-vector estimation for non-Gaussian initial state-vector , 1971 .
[27] Thomas Kailath,et al. Fredholm resolvents, Wiener-Hopf equations, and Riccati differential equations , 1969, IEEE Trans. Inf. Theory.
[28] C. Striebel,et al. On the maximum likelihood estimates for linear dynamic systems , 1965 .
[29] A. Jazwinski. Stochastic Processes and Filtering Theory , 1970 .
[30] L. E. Zachrisson. On optimal smoothing of continuous time Kalman processes , 1969, Inf. Sci..
[31] E. Robinson,et al. Recursive solution to the multichannel filtering problem , 1965 .
[32] W. Willman,et al. On the linear smoothing problem , 1969 .
[33] D. Lainiotis,et al. Monte Carlo study of the optimal non-linear estimator: linear systems with non-gaussian initial states † , 1972 .
[34] Demetrios G. Lainiotis,et al. Joint Detection, Estimation and System Identification , 1971, Inf. Control..
[35] T. Kailath,et al. An innovations approach to least-squares estimation--Part III: Nonlinear estimation in white Gaussian noise , 1971 .
[36] Cornelius T. Leondes,et al. Nonlinear Smoothing Theory , 1970, IEEE Trans. Syst. Sci. Cybern..
[37] R. Mehra,et al. On optimal and suboptimal linear smoothing , 1968 .
[38] H. Sorenson,et al. NONLINEAR FILTERING BY APPROXIMATION OF THE A POSTERIORI DENSITY , 1968 .
[39] James Ting-Ho Lo,et al. On optimal nonlinear estimation part I: Continuous observation , 1973, Inf. Sci..
[40] H. Kushner. Approximations to optimal nonlinear filters , 1967, IEEE Transactions on Automatic Control.
[41] R. L. Stratonovich. CONDITIONAL MARKOV PROCESSES , 1960 .
[42] J. Meditch. Orthogonal Projection and Discrete Optimal Linear Smoothing , 1967 .
[43] H. Power,et al. Dyadic modal control of multi-input time-invariant linear systems incorporating integral feedback , 1971 .
[44] R. Bucy. Nonlinear filtering theory , 1965 .
[45] John E. Prussing,et al. A simplified method for solving the matrix Riccati equation , 1972 .
[46] H. Kushner. On the dynamical equations of conditional probability density functions, with applications to optimal stochastic control theory , 1964 .
[47] James S. Meditch. On Optimal Linear Smoothing Theory , 1967, Inf. Control..
[48] G. Kallianpur,et al. Arbitrary system process with additive white noise observation errors , 1968 .
[49] E. Stear,et al. Optimal filtering for Gauss—Markov noise† , 1968 .
[50] D. Lainiotis. Optimal adaptive estimation: Structure and parameter adaptation-Part I: Linear models and continuous data , 1969 .
[51] T. Nishimura. A New Approach to Estimation of Initial Conditions and Smoothing Problems , 1969, IEEE Transactions on Aerospace and Electronic Systems.
[52] H. Kushner. Dynamical equations for optimal nonlinear filtering , 1967 .
[53] D. C. Fraser,et al. A new technique for the optimal smoothing of data , 1968 .
[54] James Ting-Ho Lo,et al. Finite-dimensional sensor orbits and optimal nonlinear filtering , 1972, IEEE Trans. Inf. Theory.
[55] D. G. Lainiotis. ADAPTIVE PATTERN RECOGNITION: A STATE-VARIABLE APPROACH , 1972 .
[56] H. Kushner. On the Differential Equations Satisfied by Conditional Probablitity Densities of Markov Processes, with Applications , 1964 .
[57] D. Lainiotis. A nonlinear adaptive estimation recursive algorithm , 1968 .
[58] H. Rauch. Solutions to the linear smoothing problem , 1963 .
[59] Yoshikazu Sawaragi,et al. State estimation for continuous-time system with interrupted observation , 1973, CDC 1973.
[60] Rangasami Sridhar,et al. Sequential estimation of states and parameters in noisy non-linear dynamical systems , 1966 .
[61] D. Lainiotis. Optimal linear smoothing : Continuous data case † , 1973 .
[62] H. Kwakernaak,et al. Optimal filtering in linear systems with time delays , 1967, IEEE Transactions on Automatic Control.
[63] Demetrios G. Lainiotis,et al. Discrete Riccati equation solutions: Partitioned algorithms , 1975 .
[64] H. Sorenson,et al. Nonlinear Bayesian estimation using Gaussian sum approximations , 1972 .
[65] D. Magill. Optimal adaptive estimation of sampled stochastic processes , 1965 .
[66] D. Lainiotis. Optimal adaptive estimation: Structure and parameter adaption , 1971 .
[67] N. Levinson. The Wiener (Root Mean Square) Error Criterion in Filter Design and Prediction , 1946 .
[68] R. Bucy,et al. Digital synthesis of non-linear filters , 1971 .
[69] T. Kailath,et al. An innovations approach to least-squares estimation--Part II: Linear smoothing in additive white noise , 1968 .
[70] D. Lainiotis,et al. On joint detection, estimation and system identification: discrete data case† , 1973 .
[71] D. G. Lainiotis,et al. Optimal adaptive filter realizations for sample stochastic processes with an unknown parameter , 1969 .
[72] Thomas Kailath,et al. A general likelihood-ratio formula for random signals in Gaussian noise , 1969, IEEE Trans. Inf. Theory.
[73] E. Stear,et al. Near-optimal non-linear filtering using quasi-moment functions† , 1970 .
[74] Brian D. O. Anderson,et al. Smoothing as an improvement on filtering: a universal bound , 1971 .
[75] D. G. Lainiotis,et al. LEARNING SYSTEMS FOR MINIMUM RISK ADAPTIVE PATTERN CLASSIFICATION AND OPTIMAL ADAPTIVE ESTIMATION. , 1967 .
[76] D. Lainiotis. Optimal non-linear estimation† , 1971 .
[77] Brian D. O. Anderson,et al. New linear smoothing formulas , 1972 .
[78] James S. Meditch. Optimal fixed-point continuous linear smoothing , 1966 .
[79] John M. Richardson. The implicit conditioning method in statistical mechanics , 1974, Inf. Sci..
[80] Henry Cox,et al. On the estimation of state variables and parameters for noisy dynamic systems , 1964 .
[81] David L Kleinman,et al. Suboptimal design of linear regulator systems subject to computer storage limitations , 1967 .
[82] D. Lainiotis. Optimal adaptive estimation: Structure and parameter adaptation , 1970 .
[83] D. Lainiotis. Optimal nonlinear estimation , 1971, CDC 1971.
[84] A. Lindquist. A New Algorithm for Optimal Filtering of Discrete-Time Stationary Processes , 1974 .
[85] Y. C. Ho,et al. The Method of Least Squares and Optimal Filtering Theory , 1962 .
[86] Demetrios G. Lainiotis,et al. Optimal Estimation in the Presence of Unknown Parameters , 1969, IEEE Trans. Syst. Sci. Cybern..
[87] Demetrios G. Lainiotis,et al. Partitioned linear estimation algorithms: Discrete case , 1975 .
[88] R. Mortensen. Maximum-likelihood recursive nonlinear filtering , 1968 .
[89] David Q. Mayne,et al. A solution of the smoothing problem for linear dynamic systems , 1966, Autom..
[90] Y. Ho,et al. A Bayesian approach to problems in stochastic estimation and control , 1964 .
[91] R. E. Kalman,et al. FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS , 1962 .