Analysis of a symplectic difference scheme for a coupled nonlinear Schrödinger system

In general, proofs of convergence and stability are difficult for symplectic schemes of nonlinear equations. In this paper, a symplectic difference scheme is proposed for an initial-boundary value problem of a coupled nonlinear Schrodinger system. An important lemma and an induction argument are used to prove the unique solvability, convergence and stability of numerical solutions. An iterative algorithm is also proposed for the symplectic scheme and its convergence is proved. Numerical examples show the efficiency of the symplectic scheme and the correction of our numerical analysis.

[1]  Z. Fei,et al.  Numerical simulation of nonlinear Schro¨dinger systems: a new conservative scheme , 1995 .

[2]  A. Durán,et al.  The numerical integration of relative equilibrium solutions. The nonlinear Schrödinger equation , 2000 .

[3]  Takayasu Matsuo Dissipative/conservative Galerkin method using discrete partial derivatives for nonlinear evolution equations , 2008 .

[4]  C. Schober,et al.  On the preservation of phase space structure under multisymplectic discretization , 2004 .

[5]  Luming Zhang,et al.  A conservative numerical scheme for a class of nonlinear Schrödinger equation with wave operator , 2003, Appl. Math. Comput..

[6]  L. Vu-Quoc,et al.  Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation , 1995 .

[7]  Anders Wäänänen,et al.  Advanced resource connector middleware for lightweight computational Grids , 2007 .

[8]  Takayasu Matsuo,et al.  High-order schemes for conservative or dissipative systems , 2003 .

[9]  Brian E. Moore,et al.  Multi-symplectic integration methods for Hamiltonian PDEs , 2003, Future Gener. Comput. Syst..

[10]  Takayasu Matsuo,et al.  New conservative schemes with discrete variational derivatives for nonlinear wave equations , 2007 .

[11]  Christo I. Christov,et al.  Strong coupling of Schrödinger equations: Conservative scheme approach , 2005, Math. Comput. Simul..

[12]  Qianshun Chang,et al.  Finite difference method for generalized Zakharov equations , 1995 .

[13]  Ben-yu Guo,et al.  The convergence of numerical method for nonlinear Schro¨dinger equation , 1986 .

[14]  Jian-Qiang Sun,et al.  Multi-symplectic methods for the coupled 1D nonlinear Schrödinger system , 2003 .

[15]  J. M. Sanz-Serna,et al.  Symplectic integrators for Hamiltonian problems: an overview , 1992, Acta Numerica.

[16]  Thiab R. Taha,et al.  Numerical simulation of coupled nonlinear Schrödinger equation , 2001 .

[17]  Daisuke Furihata,et al.  Finite-difference schemes for nonlinear wave equation that inherit energy conservation property , 2001 .

[18]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[19]  G. M. Clemence,et al.  Blow up of smooth solutions to the barotropic compressible magnetohydrodynamic equations with finite mass and energy , 2008, 0811.4359.

[20]  Mengzhao Qin,et al.  Construction of symplectic schemes for wave equations via hyperbolic functions sinh(x), cosh(x) and tanh(x) , 1993 .

[21]  Tang,et al.  SYMPLECTIC COMPUTATION OF HAMILTONIAN SYSTEMS (I) , 2002 .

[22]  M. S. Ismail,et al.  Highly accurate finite difference method for coupled nonlinear Schrödinger equation , 2004, Int. J. Comput. Math..

[23]  Thiab R. Taha,et al.  A linearly implicit conservative scheme for the coupled nonlinear Schrödinger equation , 2007, Math. Comput. Simul..