Analysis of a symplectic difference scheme for a coupled nonlinear Schrödinger system
暂无分享,去创建一个
[1] Z. Fei,et al. Numerical simulation of nonlinear Schro¨dinger systems: a new conservative scheme , 1995 .
[2] A. Durán,et al. The numerical integration of relative equilibrium solutions. The nonlinear Schrödinger equation , 2000 .
[3] Takayasu Matsuo. Dissipative/conservative Galerkin method using discrete partial derivatives for nonlinear evolution equations , 2008 .
[4] C. Schober,et al. On the preservation of phase space structure under multisymplectic discretization , 2004 .
[5] Luming Zhang,et al. A conservative numerical scheme for a class of nonlinear Schrödinger equation with wave operator , 2003, Appl. Math. Comput..
[6] L. Vu-Quoc,et al. Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation , 1995 .
[7] Anders Wäänänen,et al. Advanced resource connector middleware for lightweight computational Grids , 2007 .
[8] Takayasu Matsuo,et al. High-order schemes for conservative or dissipative systems , 2003 .
[9] Brian E. Moore,et al. Multi-symplectic integration methods for Hamiltonian PDEs , 2003, Future Gener. Comput. Syst..
[10] Takayasu Matsuo,et al. New conservative schemes with discrete variational derivatives for nonlinear wave equations , 2007 .
[11] Christo I. Christov,et al. Strong coupling of Schrödinger equations: Conservative scheme approach , 2005, Math. Comput. Simul..
[12] Qianshun Chang,et al. Finite difference method for generalized Zakharov equations , 1995 .
[13] Ben-yu Guo,et al. The convergence of numerical method for nonlinear Schro¨dinger equation , 1986 .
[14] Jian-Qiang Sun,et al. Multi-symplectic methods for the coupled 1D nonlinear Schrödinger system , 2003 .
[15] J. M. Sanz-Serna,et al. Symplectic integrators for Hamiltonian problems: an overview , 1992, Acta Numerica.
[16] Thiab R. Taha,et al. Numerical simulation of coupled nonlinear Schrödinger equation , 2001 .
[17] Daisuke Furihata,et al. Finite-difference schemes for nonlinear wave equation that inherit energy conservation property , 2001 .
[18] J. M. Sanz-Serna,et al. Numerical Hamiltonian Problems , 1994 .
[19] G. M. Clemence,et al. Blow up of smooth solutions to the barotropic compressible magnetohydrodynamic equations with finite mass and energy , 2008, 0811.4359.
[20] Mengzhao Qin,et al. Construction of symplectic schemes for wave equations via hyperbolic functions sinh(x), cosh(x) and tanh(x) , 1993 .
[21] Tang,et al. SYMPLECTIC COMPUTATION OF HAMILTONIAN SYSTEMS (I) , 2002 .
[22] M. S. Ismail,et al. Highly accurate finite difference method for coupled nonlinear Schrödinger equation , 2004, Int. J. Comput. Math..
[23] Thiab R. Taha,et al. A linearly implicit conservative scheme for the coupled nonlinear Schrödinger equation , 2007, Math. Comput. Simul..