Some aspects of Euler-Newton equations of motion

SummaryEuler-Newton's equations for a system of connected rigid bodies, written in a special state space form, provide a systematic method of arriving at the differential equations of the system. This method is amenable to programming and symbolic algebraic manipulation. The elimination of some or all forces of constraint is by projection, implementing the principle of virtual work, and is done by inner products. The computation of these forces requires symbolic inversion of a matrix for which an iterative scheme is proposed here. A method for construction of Lyapunov functions for stability of such systems in the vicinity of an arbitrary operating point is proposed. This construction may be achieved by symbolic manipulations and supplements applications of the Euler-Newton method.ÜbersichtEuler-Newtonsche Gleichungen, dargestellt in einem besonderen Zustandsraum, liefern eine systematische Methode zur Herleitung der Differentialgleichungen eines Systems starr verbundener Körper. Diese Methode eignet sich für symbolisch algebraische Verfahren und zur Programmierung. Durch Projektion, unter Anwendung des Prinzips der virtuellen Arbeit und Berechnung der inneren Produkte, können einige oder alle Zwangskräfte eliminiert werden. Die Berechnung dieser Kräfte erfordert symbolische Matrixinversion, für die hier ein iteratives Verfahren vorgeschlagen wird. Ferner wird eine Methode vorgestellt, die zur Herleitung der Lyapunovschen Stabilitätsfunktion in der Umgebung eines beliebigen Arbeitspunktes dient. Die Lyapunovfunktion kann durch symbolische Verfahren und durch ergänzende Anwendungen der Euler-Newton Methode ermittelt werden.

[1]  P. Ungar,et al.  Motion under a strong constraining force , 1957 .

[2]  T. Kane Dynamics of Nonholonomic Systems , 1961 .

[3]  Jonathan K. Millen CHARYBDIS: a LISP program to display mathematical expressions on typewriter-like devices , 1967 .

[4]  H. Henami Derivation of a matrix identity , 1969 .

[5]  Some exclusive properties of the negative root locus , 1969 .

[6]  M. Sain Matrix identities [Comment on "Derivation of a matrix identity"] , 1970 .

[7]  Carl Engelman The legacy of MATHLAB 68 , 1971, SYMSAC '71.

[8]  W. A. Martin,et al.  The MACSYMA system , 1971, SYMSAC '71.

[9]  S. R. Bourne,et al.  The design of the Cambridge algebra system , 1971, SYMSAC '71.

[10]  Joel Moses,et al.  Symbolic integration: the stormy decade , 1966, CACM.

[11]  William H. Jefferys Automated algebraic manipulation in celestial mechanics , 1971, CACM.

[12]  J. Baumgarte Stabilization of constraints and integrals of motion in dynamical systems , 1972 .

[13]  Stephen Roy Dillon Computer assisted equation generation in linkage dynamics , 1973 .

[14]  R. McGhee,et al.  On the dynamic stability of biped locomotion. , 1974, IEEE transactions on bio-medical engineering.

[15]  Hooshang Hemami,et al.  Automated equation generation and its application to problems in control , 1974 .

[16]  J. Wittenburg,et al.  Relative equilibrium positions and their stability for a multi-body satellite in a circular orbit , 1975 .

[17]  G. Saridis,et al.  Legged Locomotion Robots and Anthropomorphic Mechanisms: by M. Vukobratovic. Mihailo Pupin Institute, Belgrade, 1975, 346 pp. $23. , 1976 .

[18]  J. Wittenburg,et al.  Dynamics of systems of rigid bodies , 1977 .

[19]  W. Schichlen,et al.  Rechnergestütztes Aufstellen der Bewegungsgleichungen gewöhnlicher Mehrkörpersysteme , 1977 .

[20]  W. Schiehlen,et al.  Symbolic Computerized Derivation of Equations of Motion , 1978 .

[21]  H. Hemami,et al.  Modeling and control of constrained dynamic systems with application to biped locomotion in the frontal plane , 1979 .

[22]  Hooshang Hemami,et al.  Indirect Control of the Forces of Constraint in Dynamic Systems , 1979 .

[23]  H. Hemami,et al.  Control of constrained systems of controllability index two , 1980 .

[24]  H. Hatze,et al.  Neuromusculoskeletal control systems modeling--A critical survey of recent developments , 1980 .

[25]  Leopold Alexander Pars,et al.  A Treatise on Analytical Dynamics , 1981 .

[26]  Hooshang Hemami A state space model for interconnected rigid bodies , 1982 .