AgNb₇O₁₈: an ergodic relaxor ferroelectric.

AgNb7O18 is a relaxor ferroelectric with a Burns temperature of ~490 K and an incipient transition to the nonergodic state. The short-range structure is shown by convergent-beam electron diffraction to have the polar space group Im2m, but refinements against powder X-ray diffraction find the long-range structure to have the centrosymmetric space group Immm. Relaxor behavior in AgNb7O18 appears to originate from the partial occupation of large interstices by Ag(+) cations. Both cations and oxygen anions are displaced away from zones where NbO6 octahedra are edge-sharing.

[1]  A. A. Bokov,et al.  Recent progress in relaxor ferroelectrics with perovskite structure , 2020, Progress in Advanced Dielectrics.

[2]  R. Whatmore,et al.  Magnetic Field-Induced Ferroelectric Switching in Multiferroic Aurivillius Phase Thin Films at Room Temperature , 2013 .

[3]  H. Roussel,et al.  (Naxk1−x)2Ta4O11(x≈0.93) piezoelectric phase from the transformation of Ta2O5 thin films of monoclinic structure , 2013 .

[4]  D. I. Woodward,et al.  Digital electron diffraction – seeing the whole picture , 2012, Acta crystallographica. Section A, Foundations of crystallography.

[5]  S. Trolier-McKinstry,et al.  Ferroelectric-thermoelectricity and Mott transition of ferroelectric oxides with high electronic conductivity , 2012 .

[6]  O. Palasyuk NaCu(Ta{sub 1-y}Nb{sub y}){sub 4}O{sub 11} solid solution: A tunable band gap spanning the visible-light wavelengths , 2012 .

[7]  Z. Ye,et al.  DIELECTRIC RELAXATION IN RELAXOR FERROELECTRICS , 2012 .

[8]  X. Yao,et al.  Static and dynamic polar nanoregions in relaxor ferroelectric Ba(Ti1-xSnx)O3 system at high temperature , 2012 .

[9]  M. Audier,et al.  A very promising piezoelectric property of Ta2O5 thin films. II: Birefringence and piezoelectricity , 2011 .

[10]  Anna N. Morozovska,et al.  Surface Domain Structures and Mesoscopic Phase Transition in Relaxor Ferroelectrics , 2011 .

[11]  D. I. Woodward,et al.  Ferroelectricity in the xAg2Nb4O11–(1−x)Na2Nb4O11 solid solution , 2011 .

[12]  M. Itoh,et al.  Structure of Ferroelectric Silver Niobate AgNbO3 , 2011 .

[13]  A. West,et al.  Structural characterisation of ferroelectric Ag2Nb4O11 and dielectric Ag2Ta4O11 , 2011 .

[14]  P. Maggard,et al.  Site-differentiated solid solution in (Na(1-x)Cu(x))2Ta4O11 and its electronic structure and optical properties. , 2010, Inorganic chemistry.

[15]  D. Sinclair,et al.  Soft-mode behavior and incipient ferroelectricity inNa1/2Bi1/2Cu3Ti4O12 , 2010 .

[16]  A. West,et al.  A new family of ferroelectric materials: Me2Nb4O11 (Me = Na and Ag) , 2010 .

[17]  S. Trolier-McKinstry,et al.  SrxBa1−xNb2O6−δ Ferroelectric-thermoelectrics: Crystal anisotropy, conduction mechanism, and power factor , 2010 .

[18]  E. al.,et al.  Compositional disorder, polar nanoregions and dipole dynamics in Pb(Mg1/3Nb2/3)O3-based relaxor ferroelectrics , 2010 .

[19]  Z. Ye,et al.  Re-entrant-like relaxor behaviour in the new 0.99BaTiO3–0.01AgNbO3 solid solution , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[20]  M. Itoh,et al.  Piezoelectric properties of lithium modified silver niobate perovskite single crystals , 2008 .

[21]  P. Rozier,et al.  Crystal chemistry in the Ag2O–Nb2O5 system: AgNb3O8 structure determination , 2008 .

[22]  S. Wu,et al.  Dielectric anomalies in (BaxSr1−x)4Nd2Ti4Nb6O30 ceramics with various radius differences between A1- and A2-site ions , 2007 .

[23]  A. West,et al.  Dielectric and structural studies of Ba2MTi2Nb3O15 (BMTNO15, M=Bi3+,La3+,Nd3+,Sm3+,Gd3+) tetragonal tungsten bronze-structured ceramics , 2007 .

[24]  C. Randall,et al.  High-temperature perovskite relaxor ferroelectrics: A comparative study , 2007 .

[25]  A. Kudo,et al.  Role of Ag+ in the Band Structures and Photocatalytic Properties of AgMO3 (M: Ta and Nb) with the Perovskite Structure , 2002 .

[26]  Nicola A. Hill,et al.  Why Are There so Few Magnetic Ferroelectrics , 2000 .

[27]  Peter W. Stephens,et al.  Phenomenological model of anisotropic peak broadening in powder diffraction , 1999 .

[28]  R. Cava,et al.  Low Temperature Coefficient Bulk Dielectrics in the Ca2Nb2O7–Ca2Ta2O7 System , 1998 .

[29]  A. Tagantsev,et al.  Vogel-Fulcher relationship for the dielectric permittivity of relaxor ferroelectrics. , 1994, Physical review letters.

[30]  R. Cohen,et al.  ELECTRONIC-STRUCTURE STUDIES OF THE DIFFERENCES IN FERROELECTRIC BEHAVIOR OF BATIO3 AND PBTIO3 , 1992 .

[31]  Cross,et al.  Deviation from Curie-Weiss behavior in relaxor ferroelectrics. , 1992, Physical review. B, Condensed matter.

[32]  J. Gavarri,et al.  X-ray and neutron diffraction studies of the diffuse phase transition in PbMg13Nb23O3 ceramics , 1991 .

[33]  L. E. Cross,et al.  Freezing of the polarization fluctuations in lead magnesium niobate relaxors , 1990 .

[34]  B. Marinder,et al.  The structure of NaNb7O18 as deduced from HREM images and X-ray powder diffraction data , 1984 .

[35]  F. H. Dacol,et al.  Glassy polarization behavior in ferroelectric compounds Pb(Mg13Nb23)O3 and Pb(Zn13Nb23)O3 , 1983 .

[36]  B. F. Buxton,et al.  The symmetry of electron diffraction zone axis patterns , 1976, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.